
6.841 Advanced Complexity Theory Feb 28, 2007

Lecture 7

Lecturer: Madhu Sudan Scribe: Benjamin Rossman

Today: Communication Complexity

• Definitions

• Connection to circuit complexity

• Basic results

The setting is the following. There are two players Alice and Bob, separated
by physical distance. They want jointly to compute function f(x, y) of inputs
x and y. Originally, only Alice knows x and only Bob knows y. Alice and Bob
communicate by sending each other bits, one at a time. Pictorially, we have
something like

x −−−→ Alice
b1−−−−→
b2−−−−→
b3←−−−−
b3−−−−→

...
bk←−−−−

Bob ←−−− y

This goes on until Alice and Bob each have enough information to determine
the value f(x, y) (possibly without knowing the other party’s complete input).
At that point, the interaction ends. We think of such an interaction as a coop-
erative “game” between Alice and Bob, where the objective is for both parties
to ascertain f(x, y) in the fewest possible rounds.

We ask the question: how many bits must Alice and Bob exchange so that
each of them can compute f(x, y)? For instance, Alice can transmit x to Bob,
then Bob can compute f(x, y) and send the result back to Alice. Of course,
we’d like to get away with transmitting fewer bits. We don’t care how long
Alice and Bob spend on their private computations; the only goal is minimizing
the length of the interaction, i.e., the number of bits passed between Alice and
Bob.

In a slightly more general framework, the combinatorial problem is given by
a relation R(x, y, z). Here x, y are the inputs and z is an admissible solution:
given x and y, we want z such that (x, y, z) ∈ R. Usually, we think of inputs and
outputs as sequences of bits, that is, R ⊆ {0, 1}n×{0, 1}n×{0, 1}m. Also, it is
common to consider m� n (m much smaller than n), since z usually contains

7-1

far less information than the pair (x, y). (For all inputs x, y, we will assume
there is at least one z such that (x, y, z) ∈ R.)

Solutions to this combinatorial problem take the form of procotols. At each
stage in an interaction (game), a protocol π specifies:

1. whether the game ends, and

2. if the game continues who transmits the next bit and what that bit is.

At the kth stage, Alice’s action under a protocol π must be purely a function of
the input x and the history b1, . . . , bk−1 of the interaction so far. (By “Alice’s
action” is meant either: “terminate with some output z”, “send bit 0/1 to
Bob”, or “wait for Bob to send the next bit”.) Similarly, Bob’s action under
π must be a function of y and b1, . . . , bk−1. For the protocol π to be correct,
Alice and Bob should terminate at the same time (with both outputs in the set
{z : f(x, y, z) ∈ R}), and only one of them should send a bit in each round so
long as the game continues. This model was introduced by [Yao ∼1980].

Definition 1 The communication complexity of a protocol π is defined by

CC(π) = max
x,y
{# bits transmitted before π terminates on inputs x, y}.

Communication complexity of relations and functions is defined as follows.
For a relation R, let

CC(R) = {CC(π) | π is a protocol computing R}.

For a function f : {0, 1}n×{0, 1}n → {0, 1}, let CC(f) = CC(R) where R is the
relation {(x, y, f(x, y))}. We understand communication complexity far better
for functions than for relations.

We are also interested in communication complexity of partial functions. A
partial function is a function with range {0, 1, ?} where ? denotes “don’t care”.
This setup corresponds a promise problems in which Alice and Bob must jointly
compute a function f(x, y) with the promise that the input pair (x, y) comes
from a specified set (if the promise is violated, then any output is accepted).
Communication complexity of a partial function f : {0, 1}n×{0, 1}n → {0, 1, ?}
is defined by CC(f) = CC(R) where R is the relation {(x, y, 0) : f(x, y) ∈
{0, ?}} ∪ {(x, y, 1) : f(x, y) ∈ {1, ?}}. Communication complexity of partial
functions is also very interesting: often lower bounds for promise problems are
better than for any completion you can choose. Techniques for promise problems
often don’t extend to complete functions.

This is the broad setting for communication complexity. Let’s look at upper
and lower bounds. We know that CC(R) ≤ n + m by a trivial protocol: Alice
sends x, Bob computes z such that R(x, y, z) and sends z. We know linear lower
bounds for some functions, but few techniques for proving linear lower bounds
in general.

7-2

Karchmer-Wigderson games

Karchmer-Wigderson games involve a nonstandard way of associating a relation
Rf with a function f . Consider a function f : {0, 1}n → {0, 1}. The idea is
look at pairs of inputs x, y with the promise that f(x) = 1 and f(y) = 0.
In particular, this implies x 6= y, so there exists a bit where x and y differ
(i.e. xi 6= yi for some i ∈ {1, . . . , n}. This leads us to define a relation Rf ⊆
{0, 1}n × {0, 1}n × {1, . . . , n} by

Rf = {(x, y, i) | f(x) = 1, f(y) = 0, xi 6= yi}∪{(x, y, i) | f(x) = 0 or f(y) = 1}.

Note that Rf contains all triples (x, y, i) where the promise that f(x) = 1 and
f(y) = 0 is violated. The relation Rf correspond to a “game” in which Alice
and Bob receive inputs x and y such that f(x) = 1 and f(y) = 0 and their
objective is to find an index i such that xi 6= yi.

We now prove a remarkable theorem relating a standard complexity measure
of a function f with the communication complexity of the relation Rf . It is
hard to see where the original intuition came from, however the proof is nice
and simple once you see it.

Theorem 2 CC(Rf) = Depth(f)

Here Depth(f) is the circuit depth of f , that is, the minimal depth of a
circuit computing f that has only 2-AND, 2-OR and NOT gates.

Proof We first show CC(Rf) ≤ Depth(f) (easy direction). This involves con-
verting a circuit C computing f into a protocols. Wlog, Depth(C) = Depth(f).
Suppose the top (output) gate in C is an OR-gate with subcircuits C0 and C1
feeding into it. Let f0, f1 be the functions computed by C0, C1.

For i = 0, 1, we have Depth(Ci) ≤ Depth(C)− 1, so that by induction there
exists a protocol πi computing fi with CC(πi) ≤ Depth(f)− 1. We now derive
a protocol π for f . We may assume that Alice and Bob have inputs x, y such
that f(x) = 1 and f(y) = 0 (since otherwise any output is okay). Clearly
max{f0(x), f1(x)} = 1 while f0(y) = f1(y) = 0. In the first round of the
protocol, Alice can therefore send Bob a bit b ∈ {0, 1} such that fb(x) = 1 and
fb(y) = 0. Alice and Bob now proceed according to protocol πb.

The induction step is symmetric when the top (output) gate in C is an AND-
gate; this time Bob communicates a bit b such that fb(x) = 1 and fb(y) = 0.

In other direction (just slightly more complicated), we convert protocols to
circuits. This argument requires KM games for partial functions (in order to
have a stronger induction hypothesis). We will show that CC(Rf) ≥ Depth(f)
for every partial function f : {0, 1}n → {0, 1, ?}. Recall that (x, y, i) ∈ Rf iff
either

[

f(x) = 1 and f(y) = 0 and xi 6= yi

]

or f(x) 6= 0 or f(y) 6= 1.
Let π be a protocol computing f (i.e. computing Rf), and consider in-

puts x, y ∈ {0, 1}n such that f(x) = 1 and f(y) = 0. Suppose Alice sends
the first bit under π. That is, she computes b(x) ∈ {0, 1} and sends it to
Bob. We claim there is a circuit C computing f of the form C0 OR C1 where

7-3

max{depth(C0), depth(C1)} ≤ CC(Rf) − 1. (Had Bob communicated the first
bit, then we would have C0 AND C1 instead.)

So what are circuits C0 and C1? In order to use the induction hypothesis, we
define partial functions f0, f1 : {0, 1}n → {0, 1, ?} by

fi(x) =







1 if f(x) = 1 and b(x) = i,
0 if f(x) = 0,
? otherwise.

For i = 0, 1, protocol π induces a protocol πi for computing fi: the protocol πi

simply dictates what happens after Alice sends the first bit b(x) = i. The longest
communication under π0 or π1 is precisely 1 less than the longest communication
under π, that is, max{CC(π0), CC(π1)} = CC(π) − 1. We now apply the
induction hypothesis to obtain circuits Ci of depth CC(πi) computing fi for
i = 0, 1. Let C be the circuit C0 OR C1. We claim that C computes f . This is
easily seen from the picture:

{0,1}n

b=1

b=0

f=1 f=0

f1=1

f0=0

f0=1

f1=0

The region where either f0 = 1 or f1 = 1 contains the region where f = 1, while
the region where f = 0 is contained by both regions f0 = 0 and f1 = 0.

In the case where Bob sends the first bit, by a similar argument we get a
circuit C with an AND-gate on top.

Application: Circuit Depth of PARITY

Let’s see an application of this theorem. It is known that the smallest circuit
computing PARITY using only 2-AND, 2-OR and NOT gates has size ≥ n2.
From this it follows that depth(⊕) ≥ 2 log

2
(n). However, we can prove this

directly using Theorem 1. It suffices to show that CC(R⊕) ≥ 2 log
2
(n).

We will argue that, under any protocol computing PARITY, Alice must
send Bob at least log

2
(n) bits and vice-versa, so that at least 2 log

2
(n) bits are

transmitted in total. Why must Alice send Bob at least log
2
(n) bits? Let x

7-4

be uniformly distributed among inputs in {0, 1}n such that ⊕(x) = 1, and let
y = x + ei where i is uniform in {1, . . . , n} and ei = (0, . . . , 0, 1, 0, . . . , 0) with
1 in the ith place. Clearly ⊕(y) = 0. By the pigeonhole principle, Bob must
receive ≥ log n bits from Alice in order to determine the unique coordinate i
where x and y different, since for k < log

2
(n) there are more possibilities for

i ∈ {1, . . . , n} than possible sequences of bits b1, . . . , bk received from Alice.
This lower bound is almost the best known. Any lower bound greater than

Ω(log
2
(n)) for CC(R⊕) would be a real breakthrough.

Communication Complexity of Functions

Communication complexity of functions is better understand than for relations
or partial functions. For a function f : {0, 1}n → {0, 1}, we clearly have
CC(f) ≤ n + 1. In fact, Prf [CC(f) < n]→ 0 as n→∞, so a random function
is very likely to have nearly the maximum possible communication complexity.
Explicit example of functions f with CC(f) ≥ n are known. We will describe a
few.

Lower Bounds by Tiling

Tiling is a technique for proving lower bounds on the communication complexity
of functions. Say we have a function f : {0, 1}n × {0, 1}n → {0, 1} (it is useful
to think of the 2n×2n 0-1 matrix Mf) and inputs x, y ∈ {0, 1}n. Consider some
exchange of bits between Alice and Bob under a fixed protocol π computing f ,

say A
b1−→ B, A

b2−→ B, B
b3−→ A, . . . , B

bk−→ A (as in the earlier picture).
Let b̄ = (b1, b2, b3, . . . , bk) be the transcript of this interaction, and let Sb̄ =

{(x, y) : π(x, y) has interaction b̄}. What sets Sb̄ ⊆ {0, 1}n × {0, 1}n can arise
in this way?

Claim 3 For every b̄, the set Sb̄ is a “rectangle”. That is, there exist subsets
SA ⊆ {0, 1}n and SB ⊆ {0, 1}n such that Sb̄ = SA × SB.

Sketch of Proof Consider any two pairs (x1, y1), (x2, y2) ∈ Sb̄. Clearly, it
suffices to show that (x1, y2) ∈ Sb̄. To see this, suppose Alice has input x1 and
Bob input y2. We ask: assuming (x1, y2) /∈ Sb̄, i.e. if (x1, y2) leads to some
different interaction b̄′, then when is the earliest stage where b̄ and b̄′ can differ?
Imagine that the first k − 1 stages of b̄ and b̄′ are identical, but the kth stage
is different. We immediately see that this is impossible! Indeed, up until the
kth stage, everything Alice sees is consistent with the possibility that Bob has
y1 (since (x1, y1) ∈ Sb̄), and similarly, everything that Bob sees is consistent
with the possibility that Alice has x2 (since (x2, y2) ∈ Sb̄). Because a protocol
is, by definition, a deterministic function of Alice and Bob’s state of knowledge
at each stage, it follows that the kth stage of b̄′ (i.e. who transmit the kth bit
and what that bit is) must the same as the kth stage of b̄. Therefore, b̄ and
b̄′ cannot be different, so we conclude (x1, y2) ∈ Sb̄. (This type of argument is
called a crossing sequence argument: we show the interaction histories b̄ and b̄′

can never cross.)

7-5

Note that a protocol π computing f can terminate after an interaction b̄ if,
and only if, both and Alice and Bob can be certain that f is constant on the
sets Sb̄. So the goal of a protocol is, in some sense, to decompose the matrix
Mf into rectangles on which f is constant. This is the idea behind the result
(proof omitted).

Lemma 4 (Tiling Lemma) Let N0 (resp. N1)be the minimal number of rect-
angles needed to partition the set of zero entries (resp. one entries) in Mf . Then
max{log N0, log N1} ≤ CC(f).

As an application, consider the equality function EQ(x, y) defined as 1 if
x = y and 0 if x 6= y. MEQ is just the 2n×2n identity matrix. Clearly N1 = 2n.
So by the Tiling Lemma, we have CC(EQ) ≥ n.

The next lemma, due to Yao, achieves a similar lower bound by means of
rank.

Lemma 5 (Rank Lower Bound) log rank(Mf) ≤ CC(f) (where rank can be
taken over any field).

Proof Idea Mf is unique expressed as a sum of N1 matrices having 1s at
entries lying in some “rectangle” in {1, . . . , 2n}×{1, . . . , 2n} and 0s everywhere
else, for example









1 0 1 1
0 0 0 0
0 0 0 0
1 0 1 1









(corresponding to the rectangle {1, 3, 4} × {1, 4} in the case n = 2). Every
matrix of this form has rank 1 (over any field). The result follows from the
Tiling Lemma and the elementary linear algebra inequality rank(A + B) ≤
rank(A) + rank(B).

As an application, we get that the inner product function IP (x, y) =
∑n

i=1
xiyi

mod 2 has communication complexity ≥ n. Indeed, this follows from the easily
checked fact that MIP has rank ≥ 2n − 1. Thus, CC(IP) ≥ dlog 2n − 1e = n
by Lemma 5.

7-6

