Today

e Complete proof of a DNP-complete
problem (under random reductions).

e Ajtai's reduction from worst-case to
average-case for some lattice problems.
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Last time (contd.)

e For @ > 1, Dy a-dominates Ds if for every
x Prp,[z] > Prp,[z]/c.

e Ais d-good for (R, D1) implies A is (- 0)-
good for (R, D).
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Recall from last time

e DNP problem given by (R, D); where R C
{0,1}* x {0,1}* is a polytime-computable
relation; and D : {0,1}* — {0,1}* is a
polytime-computable function.

e Algorithm A is §-good for (R, D) if it can
solve R for all but ¢ fraction of instances
drawn from {D(z)}, where z is uniform, in
poly-time. (To solve R means to find the
relative y such that R(z,y) if one exists.)

e (R, D) in Avg-P if there exists B(z, d) such
that Bs(-) = B(-,9) is d-good for (R, D)
and B runs in time poly in |z|,1/6.
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Impagliazzo-Levin Lemma

Lemma: There exists a (essentially uniform)
distribution U such that for every R, D there
exists a relation R’ such that (R, D) reduces
to (R, U).

Basic idea:

— Will try to make the relation R’ be R
composed with D.

— Need to specify z in domain of R given
z = D(z).

— Can't ask to invert D — may be hard.

— So specify z essentially by  and an index
w € {0, 1}* assuming D~1(z) has about
2% members.

— (2, w) does specify such a z, provided we
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pick = according to D(z). But don't get
uniformity!
— So hash (z,w) down to n-bit string w.
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Reduction

Need to reduce (R, D) to (R',U).

Reduction: Given xz, guess k, and string
w (supposedly k = log|D7!(z)| and w =
hi(z) where 2 €y D71(z)). Pick hy, ho
uniformly, and then let u = ho(z,w). Output
(U,k,hl,hz).

Claim: Instances being generated essentially
according to U.

Main step in proof: If we guess k correctly,
then very likely there is a unique z such that
D(z) =z and hy(z) = w.
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Details

e Instances of R’ are tuples (u,k,hy,hs)
where u € {0,1}", and hy : {0,1}" —
{0,1}* and hy : {0,1}"** — {0,1}" are
nice pairwise independent has functions.

o R'((u,k,h1,h2),(2,y)) ifu = ha(D(2),h1(2))

and R(D(z),y).
e Distribution on instances D; = U is the

following: u €y {0,1}", k €y {0,... ,n},
h1, ho are uniform from their families.
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Soundness of reduction

e Related distribution Dy on R’: Pick z €y
{0,1}" and let k = log, |[D~(D(2))|. Let
h1, ho be uniform on their domain and let
u = ho(D(2), h1(2)).

e Claim 1: (R/,D5) is at least as hard as
(R, D).

e Claim 2: D; n-dominates Ds.

e Details left to the reader.
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A DNP-complete problem Interlude

e Easy to massage above into a relation e Now have a theory of average-case hardness
R" and distribution U’ which is actually for problems in NP.

uniform on its domain. _
e How does it relate to worst-case hardness?

e But still don't have a single hard problem

(i.e., relation and distribution). e Wide open.

e Known techniques relating the two don't

e Use the universal relation [Levin]. seem to work [Feigenbaum-Fortnow]

e Hard problem: Ry has as instances pairs (Does not rule out all reductions - only
(R,z). Ry((R,z),y) holds if R(z,y). known forms.)
e Claim Ry on uniform distribution on inputs e Can we say anything within NP?

is at least as hard as (R”,U) - since with
) " -

probability 1/2/%°1 (a constant) we will

generate R as the relation to be solved.

Ajtai'96 : Shows that worst-case instances of an
“empirically” hard problem can be reduced
to random instances of a related problem.
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e Major breakthrough! Lattice problems

e Defn: Lattice L in R"™ is a discrete additive
subset of R™.

— Discrete: Exists d > 0 such that for every
point x € L, the ball of radius d around
x contains only one point (z) from L.

— Additive: z,y € L impliesx +y,x —y €
L.
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Specifying a lattice

e Primal specification: By basis: by,... ,b,, €
R™ (for m < n), b;'s linearly independent,
and lattice L = {}_ 1, z:bi| (21, ... , 2m) €
zm}.

e Dual specification: By vectors: b7,... b}, €
R™ (for m > n), and lattice L = {v €
R"|Vj, (v,b}) € Z}.

e Can go from one rep’'n to another
algorithmically.
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— Used in factoring polynomials over
integers [LLL].

— Important case of Diophantine approximations.

— Used widely in cryptanalysis.
— Now becoming a basis for cryptography
[Ajtai-Dwork].
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Lattice problems

e Given lattice L, compute shortest non-zero
vector in in lattice. Was open for long time,
till [Ajtai] showed it to be NP-complete for
randomized reductions.

e Given lattice L and target vector t € R"
compute nearest lattice point to ¢. (Long
know to be NP-hard.)

e Given lattice, find short basis.

e Best algorithmic result: Can find 2°(™)
approximation for all above problems in
poly time, for n-dimensional lattice.

e Shortest vector problem/Closest vector
problem are of fundamental interest:
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Ajtai’s theorem

Roughly, gives approximation problems R, R’/
and distribution D such that an avg-P
solution to (R, D) implies a RP algorithm
for R'.

e R’ Instance is a pair — a lattice L and a
bound M with the promise that there exists
a basis for L with vectors of length at most
M. Witness is a basis by, ... , b, where all
vectors have length at most poly(n) - M.

e R: Instance is a pair — lattice L given
by dual vectors b7,...,b}, and a bound N
with the promise that L has a vector of
length at most V. Witness is a vector of
length poly(n) - N.
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e D: Fix ¢ = poly(n) and m = O(nlogq),
and N = poly(n). Pick b3,...,b},
randomly from {0,1/q,... ,q—1/q,1}"™.
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Intuition

Rapid Hand-waving.
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