6.841/18.405J: Advanced Complexity Theory April 10, 2002

Lecture 15
Lecturer: Madhu Sudan Scribe: David Woodruff

In this lecture we will cover Multiprover Interactive Proofs (MIPs), Oracle Interactive Proofs (OIPs),
and Probabilistically Checkable Proofs (PCPs). We will see that 2IP, the complexity class of languages with
interactive proofs with two provers, is stronger than IP in a certain cryptographic sense. We then introduce
OIP to show that 2IP is equivalent to MIP, the set of languages having a polynomial number of provers.
Finally, we introduce the class PCP and relate it to the previous complexity classes we have studied.

Multiprover Interactive Proofs (MIP)

What happens if we allow the verifier to interact with more than one prover in an interactive proof? The
provers have unbounded computational resources, but cannot interact with each other. If the prover wants
to cheat the verifier, he has to make sure he will not be detected when the verifier interacts with the other
provers. The complexity class of multiprover interactive proofs (MIP) was defined by Ben-Or, Goldwasser,
Kilian and Wigderson. In the case of 2 provers we have the complexity class 2IP, shown in the following
diagram:

[

<
0
<

where {g;} is the set of questions asked by the verifier V, {a;} is the set of answers given by provers P; and
P;, w is the common input string, and R is the string of V’s random coin tosses. After interacting with the
provers, V is required to produce a boolean verdict, Verdict(w, R, a1, ... ,ax). As in the definition of IP, V
is restricted to probabilistic polynomial time in the length of w.

Formally, a language L € 2IP if

e (completeness) w € L implies Py, P> such that Pr[P; « V + P, accepts] = 1.
e (soundness) w ¢ L implies VPy, P>, we have Pr[P, <+ V > P5 accepts | < 1/2.

Clearly IP C MIP because the verifier can choose to interact with just one prover. Moreover, it seems
that by limiting the cheating possibilities of the prover in MIP, we should be able to construct more verifiers
for more statements and hence MIP should be a larger class of languages than IP. In fact Babai, Fortnow,
and Lund showed that MIP = NEXPTIME.

We note that 2IP is robust with respect to error in the sense that one can convert any two-sided error
verifier V into a one-sided error verifier V'. Also, one can amplify the error by repeating the above proof
sequentially. In general, however, one cannot repeat the above proof in parallel without compromising
soundness.

An Application of 2IP: Zero-knowledge Proof

We give a cryptographic application of a two-prover interactive proof. Informally a Zero Knowledge Proof
is a proof by which the prover can convince the verifier whether or not a string « is in a language L without

15-1

giving the verifier any other information whatsoever, such as certain properties of which the verifier could
not compute otherwise. Here is a two-prover protocol for graph 3-colorability:

1. V picks a random edge e = (u,v) in the input graph G. V then picks a random endpoint w of e, i.e.,
w € {u,v}.

2. Next V sends e to P; who responds with the pair of colors (c1,c¢2), where ¢; = color(u) and c; =
color(v). If ¢; = ¢y, then V immediately rejects G.

3. V then sends w to P> who responds with ¢3 = color(w).

4. If ¢y # ¢3 and w = ¢1, then V rejects. Similarly, if ¢ # ¢3 and w = ca, then V rejects. Otherwise, V'
accepts G.

We argue completeness, soundness, and zero-knowledge. Completeness is clear - if a graph G is 3-
colorable, the honest prover convinces the verifier of this with probability 1.

As for soundness, consider a graph G = (V, E) which is not 3-colorable. Then there exists an edge e of G
whose endpoints have the same color for any coloring. Suppose P; and P, have agreed upon a coloring of the
vertices of G before the protocol begins. Fix P,. This effectively fixes a coloring of G. Then V will choose an
edge €' to send to P; which will equal e with probability 1/|E|. In order for V not to reject G immediately,
P, will have to give different colorings for the two endpoints of e, despite the coloring scheme P, and P
have agreed upon that assigns the same color to both endpoints. Then, when V' queries P, for the color of
one of the randomly chosen endpoints of e, the color P, returns for at least one of the endpoints of e will
differ from the assignment given by P;. Hence, the probability that V will accept G is at most 1 —1/(2|E]).
Repeating the above protocol sequentially a polynomial number of times, one can achieve a soundness of
1/2. Note that if |E|? rounds will be run sequentially, the provers need to agree upon a sequence of |E|?
color relabellings beforehand. The provers can collude with the knowledge of G, but must collude before V'’s
random coins are tossed.

Finally, we informally argue that the protocol is zero-knowledge. Before the beginning of the protocol
the provers agree upon a random coloring of the vertices. That is to say, if G = (V, E) is 3-colorable,
then there exists a coloring assignment f : V — {1,2,3} such that if (u,v) € E, f(u) # f(v). Then if
7 :{1,2,3} = {1,2,3} is a permutation on three letters, we see that 7 composed with f will give another
3-coloring. Hence there are 6 random colorings of G corresponding to f. The provers agree upon f and the
permutation 7 before the beginning of the protocol. When V' learns a coloring color(u) and color(v) for an
edge (u,v), he doesn’t learn anything other than the fact that color(u) # color(v) since any combination of
two colors for u and v is equally likely. Hence, the protocol is zero-knowledge.

Oracle Interactive Proofs (OIP)

Clearly we have the inclusions IP C 2IP C 3IP C --- C MIP, since the verifier can simply choose not to
interact with some of the provers. But are polynomially many provers more powerful than 2 provers? To
answer this question, Fortnow, Rompel and Sipser introduced the complexity class of Oracle Interactive
Proofs (OIP).

The key difference between MIP and OIP is that the provers in Oracle Interactive Proofs are oracles,
i.e., they are memoryless provers. Without loss of generality we can think of an oracle O as a function from
{0,1}* to {0,1}. Hence, the obvious definition:

L € OIP iff

1. (completeness) w € L implies 30 s.t. Pr[V < O accepts | =1
2. (soundness) w ¢ L implies YO Pr[V < O accepts | < 1/2

15-2

We first show MIP C OIP. Intuitively, in OIP we are restricting to a smaller class of provers so the verifier
is more likeley to accept more statements, so a language is more likely to meet the soundness criterion, so
OIP is likely to be a larger class of languages than MIP.

Formally, we can simulate any Multiprover Interactive Proof with an Oracle Interactive Proof. Suppose
there are p provers in the Multiprover Interactive Proof. We simply convert each prover into a lookup table.
If V asks prover i question ¢ with history q¢i,¢2,--. ,qx—1, then there is an entry in the table that maps
(t,q1,--- ,qx) to the answer ay that prover i would respond with. We can create one table for all provers
mapping any possible set of questions the verifier could ask to the answer given by each prover. But this is
just an oracle O and hence MIP C OIP.

We will prove the reverse inclusion for the case when V' is a non-adaptive verifier, even though OIP C
MIP for adaptive verifiers as well. We will give a reduction but we will not formally argue completeness and
soundness. Specifically, we shall argue that OIP C 2IP, and together with MIP C OIP, it will follow that
2IP = 3IP = --- = MIP.

Suppose we have an Oracle Interactive Proof with verifier V' asking questions ¢i,... , g, to oracle O.
Then we construct a verifier V' in the two-prover setting which behaves as follows. It first asks the same
questions q1,... ,qm to prover P; and receives a sequence of answers a1, ... ,an,. It then randomly chooses
an index j and sends ¢; to P». P, then responds with an answer b. Finally, V' accepts if and only if V' would
accept given answers ai, ... ,a, from O and if a; = b. Intuitively, although P; has more room to cheat
than O since he is not memoryless, P»’s answer is used to ensure P; is not using the history of questions
to base his answers on. Completeness of this protocol is clear. To see that it is sound, note both that the
original oracle O can cheat only with low probability and that if P; tries to cheat, he will be detected by
V’s interaction with P, with nonnegligible probability.

Now let’s compare IP and OIP = MIP. We saw in the last lecture that IP = PSPACE, developed by
Lund, Fortnow, Karloff, and Nisan, and later proven by Shamir. On the other hand, Babai, Fortnow, and
Lund showed that OIP = NEXPTIME. NEXPTIME can be thought of as the complexity class of languages
of short theorems with long proofs and polynomial-time verification in the length of the proof. Note that
the inclusion OIP C NEXPTIME is pretty clear. For languages in OIP we have a probabilistic polynomial-
time verifier whereas for languages in NEXPTIME we are allowed a deterministic exponential-time verifier.
Moreover, we can write down the oracle as a table of (question, answer) pairs in NEXPTIME. We would
like to “scale down” the equality MIP = NEXPTIME to obtain an equality of the form MIP’ = NP, where
verifiers in MIP’ run in logarithmic time (in the length of w), but this is not possible since the verifier would
not even be able to read the entire input.

Hence, we see that TP # OIP unless PSPACE = NEXPTIME.

Probabilistically Checkable Proofs (PCP)

We now parameterize Oracle Interactive Proofs more precisely and give them a new name, Probabilistically
Checkable Proofs (PCP). In particular, we keep track of the number of coins V' tosses, r(Jw|), and the number
of queries V' makes to O, ¢(|w|). As before, we restrict V' to run in polynomial time. Formally,

L € PCP_,[r,q] iff 3 an OIP for L with an (r, ¢)-restricted verifier V' with completeness ¢ and soundness s.
The following identities are immediate:
L PCP2/3,1/3 [poly(n), 0] = BPP.

e GNI € PCPy /3[poly(n), 1] as shown in class.

PCP1,1/2[DOIY(”)aP01Y(”)] = OIP.

NP = PCP [0, poly(n)] = PCP; ¢[O(log(n)),poly(n)]

15-3

What if we try to “scale down” from NEXPTIME to NP to get proofs for NP languages? Work by Babai,
Fortnow, Levin, and Szegedy, and by Feige, Goldwasser, Lovasz, Safra, and Szegedy showed that NP C

PCPy 1/2[poly(log(n)), poly(log(n))]. Later work by Arora and Safra showed that NP = PCPy ; /5[log(n), v/(log(n))],
and work by Arora, Lund, Motwain, Sudan, and Szegedy showed that NP = PCPy s[log(n),k] for

a constant k. Work by Hasted reduced the number of query bits to 3, showing that Ye > 0 NP =
PCP;_. 1 2[log(n), 3], and finally Guruswami, Lewin, Sudan, and Trevisin got perfect completeness by show-

ing Ve > 0 NP = PCPy ; 5[log(n), 3]. In other words, a proof of any statement in NP can be written in such

a way that it can be verified by looking at only 3 bits of the proof.

We will now use these results to show that if NP # P, then even approximating an NP-hard problem
is very hard. Let V be a verifier for a PCP ;/,[log(n), 3] language L. For each possible sequence of the
verifier’s random coins R;, we shall construct a decision tree corresponding to oracle f’s responses to V’s 3
queries. The decision tree is a balanced binary tree of depth 3. We start at the root node ¢;. If f(¢1) = 0,
we examine ¢;’s left child, otherwise we examing ¢;’s right child. Based on our response f(¢;) and R;, we
can compute the next question g, asked by V. We then branch according to whether f(g2) = 0 or f(g2) = 1.
We continue branching in this way until we reach a leaf node of the tree, which is either an Accept node or
a Reject node, depending on whether V', given toin cosses R;, accepts or rejects based on f’s responses to
his questions. Each path in this decision tree can be written as a 3-CNF ¢; formula of at most 8 clauses.
We do this for all polynomially many random strings R;. We then define & = filly ¢;. Completeness of L
implies @ is satisfiable. Soundness implies that if input z is not in L, then at least 1/2 of all formulae ¢; are
not satisfied for any assignment of oracle answers. For a formula to not be satisfied, at least 1 of 8 clauses
must not be satisfied. Hence, 1/16 of all clauses of ® are not satisfied. This says that unless P = NP, even
approximating hard problems is very hard.

15-4

