6.841/18.405J: Advanced Complexity Theory

March 13, 2002

Lecture 11

Lecturer: Dan Spielman Scribe: M.T. Hajiaghayi

In this lecture, we continue the proof of Toda's theorem, by proving some lemmas and theorems whose proofs were missed in the previous lecture. First we remind Toda's theorem.

Theorem 1 (Toda 1988) $PH \subseteq P^{\#P}$.

In the previous lecture, we introduced some interesting operators such as $\exists, \forall, BP,$ and \oplus . Also, we introduced the steps of the proof. For example, we showed that $\sum_i^P \subseteq BP \cdot \oplus \cdot BP \cdot \oplus \cdots BP \cdot \oplus \cdot P$ (Step 1) and showed very briefly how we can simplify the sequence of operations (Steps 3 and 4). Today first we prove Steps 3 and 4 more precisely. Then we discuss amplifying $BP \cdot \oplus \cdot P$ (Step 2) and finally finish the proof by showing $BP \cdot \oplus \cdot P \subseteq P^{\#P}$ (Step 5).

Claim 2 For any class C such as P that we can amplify $BP \cdot C$,

$$\begin{array}{rcl} \oplus \cdot \oplus \cdot C & = & \oplus \cdot C \\ BP \cdot BP \cdot C & = & BP \cdot C \\ \oplus \cdot BP \cdot C & \subseteq & BP \cdot \oplus \cdot C. \end{array}$$

Proof

- 1) Let L be a language in C. Then $x \in \bigoplus_y \cdot \bigoplus_z \cdot L(x,y,z)$ means there is an odd number of y's for which there is an odd number of z's such that $(x,y,z) \in L$. It is equivalent to that there is an odd number of (y,z) pairs for which $(x,(y,z)) \in L$.
- 2) First we amplify class $BP \cdot C$. Let L be a language in C. Then $x \in BP_y \cdot BP_z \cdot L$ means for at least c(n) fraction of y's, where $c(n) \geq s(n) + \frac{1}{poly(n)}$, for at least $1 \frac{1}{exp(n)}$ fraction of z's, we have $(x, y, z) \in L$. Thus our new $c'(n) \geq (s(n) + \frac{1}{poly(n)})(1 \frac{1}{exp(n)})$. On the other hand, for $x \notin L$ for at least 1 s(n) fraction of z's, for at most $\frac{1}{exp(n)}$ fractions of z's we accept z. Thus for $s'(n) \leq s(n) + \frac{1}{exp(n)}$ fraction of (y, z) pairs, we accept z. Here we can observe that still $c'(n) \geq s'(n) + \frac{1}{poly'(n)}$.
- 3) Let L be a language in C. Then $x \in \bigoplus_y \cdot BP_z \cdot L$ iff there is a polynomial $p_1(n)$ and a language $L' = BP_z \cdot L \in BP \cdot C$ such that $(x,y) \in L'$ for an odd number of y's with length $p_1(|x|)$.

Now, we amplify the error probabilities of the BP operator such that the error is less than $2^{-2p_1(|x|)}$. Then there is a polynomial $p_2(n)$ such that

1.
$$(x,y) \in L' \to Pr_{|z|=p_2(|(x,y)|)}[(x,y,z) \in L] > 1 - 2^{-2p_1(|x|)}$$

2.
$$(x,y) \notin L' \to Pr_{|z|=p_2(|(x,y|))}[(x,y,z) \in L] < 2^{-2p_1(|x|)}$$

Using above facts, we observe

$$x \in \oplus_y \cdot BP_z \cdot L \Rightarrow Pr_z[(x,y,z) \in L] > 1 - 2^{-2p_1(|x|)}$$
 for an odd number of y .

$$x \notin \bigoplus_y BP_z \cdot L \Rightarrow Pr_z[(x,y,z) \in L] > 1 - 2^{-2p_1(|x|)}$$
 for an even number of y.

In other words for any y, $Pr_z[(x,y,z) \in L \text{ disagrees with } (x,y) \in L'] < 2^{-2p_1(|x|)}$. Thus, $Pr_z[(x,y,z) \in L \text{ disagrees with } (x,y) \in L' \text{ for all } y] < 2^{-2p_1(|x|)} \cdot 2^{p_1(|x|)} = 2^{-p_1(|x|)}$. Therefore,

$$x \in \oplus_y \cdot BP_z \cdot L \Rightarrow Pr_z[(x,y,z) \in L \text{ for an odd number of } y] > 1 - 2^{-p_1(|x|)}$$

and

$$x \notin \oplus_y \cdot BP_z \cdot L \Rightarrow Pr_z[(x,y,z) \in L \text{ for an odd number of } y] < 2^{-p_1(|x|)}$$

, as desired. \blacksquare

Now, we discuss Step 2 of Toda's proof. To this end, first we need to introduce some machinery, called arithmetic on NTM. Let N_1 and N_2 be two NTM's. Let $n_1(x)$ and $n_2(x)$ be the number of accept paths of N_1 and N_2 on an input x. We define two new NTM's $N_+(x,y)$ and $N_*(x,y)$ such that $n_+(x,y) = n_1(x) + n_2(y)$ and $n_*(x) = n_1(x) * n_2(y)$. We can define N_+ on input (x,y) as follows:

- 1. non-deterministically choose 1 or 2.
- 2. if 1 then run $N_1(x)$
- 3. if 2 then run $N_2(y)$

Machine N_* is defined as follows:

- 1. run $N_1(x)$
- 2. if accept
 - (a) run $N_2(y)$
 - (b) if accept then accept else reject.
- 3. else reject

Here $TIME(N_+(x,y)) = \max\{TIME(N_1(x)), TIME(N_2(y))\}+1$ and $TIME(N_*(x,y)) = TIME(N_1(x))+TIME(N_2(y))$. Now we can observe that using the constructions of N_+ and N_* , for any polynomial family $P_n(a)$ of degree poly(n) with positive coefficients at most $2^{poly(n)}$, we can take any machine N that has n(x) accept states and conform it to a machine $N_P(x)$ that has $P_{|x|}(n(x))$ accept states and has polynomial running time (we can construct the monomials X^i by N_* and the coefficients by N_+).

We can consider NTM's by circuits. Assume we have two circuits $C_1, C_2(C_i(\cdot) = M_i(w_i, \cdot))$ taking n-bit inputs and accepting n_1 and n_2 inputs respectively. We can observe that circuit C_+ given by $C_+(x,y) = C_1(x) \wedge C_2(x)$ accepts $n_1 \cdot n_2$ inputs and circuit C_* given by $C_*(x,y,b) = (b \wedge C_1(x)) \vee (\bar{b} \wedge C_2(x))$ has $n_1 + n_2$ accepting inputs. In the rest of the lecture, we use the circuit model.

Lemma 3 We can amplify $BP \cdot \oplus \cdot P$.

Proof For simplicity, we assume the error is one-sided. Let $L \in BP_y \cdot \oplus_z \cdot P$.

- If $x \in L$ then for all y's, there is an odd number of z's for which C(x,y,z) = 1.
- If $x \notin L$ then for at most $1 \frac{1}{poly(n)}$ fraction of y's there is an odd number of z's for which C(x, y, z) = 1.

Now for amplification, choose y_1, y_2, \dots, y_m at random where m is polynomial in n. Now we can observe that $\prod_{i=1}^m (\#_{z_i}C(x,y_i,z_i)=1)$ is odd iff $\forall i$, the number of z_i 's for which $C(x,y_i,z_i)=1$ is odd. Here we can construct such a polynomial using the concept of arithmetic on NTM introduced above. Here if $x \in L$ then the probability that for all y_i 's, we get an odd number of z's is 1. On the other hand, if $x \notin L$ with probability at most $(1-\frac{1}{poly(n)})^m$ we get an odd number of z's for all y_i 's. Now if $m=n \cdot poly(n)$ then the probability is exponentially small in n.

Now we consider a slightly harder case. Again let $L \in BP_y \cdot \oplus_z \cdot P$ such that,

- If $x \in L$ then for at most $1 \frac{1}{poly(n)}$ fraction of y's, there is an odd number of z's for which C(x, y, z) = 1.
- If $x \notin L$ then for every y, there is an even number of z's for which C(x, y, z) = 1.

The main idea here is that we complement parities, take product and complement the result. More precisely, we choose y_1, y_2, \dots, y_m at random where m is polynomial in n. Now we observe $1 + \prod_{i=1}^m (1 + \#_{z_i}C(x, y_i, z_i) = 1)$ is odd iff $\forall i$, the number of z_i 's for which $C(x, y_i, z_i) = 1$ is even. We can observe that if $x \notin L$ then our error probability is zero and if $x \in L$ the error probability is at most $(1 - \frac{1}{poly(n)})^m$ which is exponentially small in n when m = n poly(n).

Strictly speaking, in our above arguments, we need to consider the case where error is almost one-sided (e.g. accept with probability 1 - exp(-n) vs. 1 - 1/poly(n).) However almost nothing changes in the proof.

Finally, we prove Step 5 of Toda's proof.

Theorem 4 $BP \cdot \oplus \cdot P \subseteq P^{\#P}$.

Proof Let L be a language in $BP_y \cdot \oplus_z \cdot P$ where $y \in \{0,1\}^m$. First we introduce $P_n(a)$, a family of polynomials, whose degree is poly(n) and whose coefficients are at most $2^{poly(n)}$ satisfying the following properties:

- 1. $P_n(a) = 0 \mod 2^{2^m}$ if $a = 0 \mod 2$.
- 2. $P_n(a) = -1 \mod 2^{2^m}$ if $a = 1 \mod 2$.

In fact, P_n can be constructed as follows. Let $h(x) = 3x^4 + 4x^3$. We can easily check that $x = 0 \mod 2^m \to h(x) = 0 \mod 2^{2m}$ and $x = -1 \mod 2^m \to h(x) = -1 \mod 2^{2m}$ (just plug in x = 0 and $x = -1 + a2^m$ in h(x)). Now, we define

$$h^{1}(x) = h(x)$$
$$h^{c}(x) = h^{c-1}(h(x))$$

and let $P_n(a) = h^{\lceil \log 2m \rceil}(a)$. We can check that $P_n(a)$ has all aforementioned properties and its degree is polynomial in m, which is also polynomial in n (|y| is polynomial in n). We turn back to the statement of the theorem. Let $L = BP_y \cdot \oplus_z \cdot L'$. Using amplification mentioned in previous lemma, we know

- 1. if $x \in L$, then $Pr_y[|\{z : L'(x, y, z) = 1\}| \text{ is odd}| > 3/4$; and
- 2. if $x \notin L$, then $Pr_y[|\{z : L(x, y, z) = 1\}| \text{ is odd}] < 1/4$.

Thus to decide whether $x \in L$ or not, we only need to distinguish whether $Pr_y[|\{z : L(x, y, z) = 1\}| \text{ is odd}]$ is more than 3/4 or less than 1/4.

To distinguish these two in $P^{\#P}$, we compute $\sum_{y} P_n(\sum_{z} \#C(y,z))$. Now for a fixed y, the value of $P_n(\sum_{z} \#C(y,z))$ is either 0 or $-1 \mod 2^{2^m}$. Because of the definition of P_n , we can count the number of y's for which the value is -1. Now we can check whether $Pr_y[|\{z: L(x,y,z)=1\}| \ is \ odd]$ is more than 3/4 or less than 1/4 by only one query of #P. Here the expression $P_n(a)$ is a one-variable polynomial, and its degree is polynomial in n. Therefore using the concept of arithmetic on NTM, $P_n(a)$ is computable in polynomial time.

The rest of the proof of Toda's theorem is just putting Steps 1–5 together and using a simple induction.