6.841/18.405J: Advanced Complexity Theory March 13, 2002

Lecture 11
Lecturer: Dan Spielman Scribe: M.T. Hajiaghayi

In this lecture, we continue the proof of Toda’s theorem, by proving some lemmas and theorems whose
proofs were missed in the previous lecture. First we remind Toda’s theorem.

Theorem 1 (Toda 1988) PH C P#F.

In the previous lecture, we introduced some interesting operators such as 3,V, BP, and ®. Also, we
introduced the steps of the proof. For example, we showed that Zf CBP-®-BP-®----BP-®- P (Step
1) and showed very briefly how we can simplify the sequence of operations (Steps 3 and 4). Today first we
prove Steps 3 and 4 more precisely. Then we discuss amplifying BP - @ - P (Step 2) and finally finish the
proof by showing BP - & - P C P#P (Step 5).

Claim 2 For any class C' such as P that we can amplify BP - C,

®-e-C = @-C
BP-BP-C = BP-C
@-BP-C C BP-o-C.

Proof

1) Let L be alanguage in C. Then = € &, - ®. - L(z,y, 2) means there is an odd number of y’s for which
there is an odd number of z’s such that (x,y, z) € L. It is equivalent to that there is an odd number of (y, )
pairs for which (z, (y,2)) € L.

2) First we amplify class BP - C. Let L be a language in C. Then x € BP, - BP, - L means for at least
c(n) fraction of y’s, where c(n) > s(n) + m, for at least 1 — fmz}W fraction of z’s, we have (z,y,z) € L.
Thus our new ¢/ (n) > (s(n) + pol;(n) )1 — ew;(n) ). On the other hand, for z ¢ L for at least 1 — s(n) fraction

1 1
exp(n) ezp(n)

we accept x. Here we can observe that still ¢'(n) > s'(n) +

of y’s, for at most fractions of z’s we accept x. Thus for s'(n) < s(n) + fraction of (y, z) pairs,

1
poly'(n)"*

3) Let L be a language in C. Then 2 € &, - BP, - L iﬁ‘ytile)re is a polynomial p; (n) and a language
L'=BP,-L € BP-(C such that (z,y) € L' for an odd number of y’s with length p; (|z]).

Now, we amplify the error probabilities of the BP operator such that the error is less than 2-271(lzl),
Then there is a polynomial ps(n) such that

1. (2,9) € L' = Prisjmpy( (2@, 2) € L] > 1 — 27271(l2])
2. (2,9) ¢ L' = Prisj—py((2.y)](2,, 2) € L] < 27271(2)
Using above facts, we observe

T € ®y-BP,- L= Pr;[(z,y,2) € L] >1— 2727112 for an odd number of y.

z ¢ ®,-BP,-L= Pr;[(z,y,2) € L] > 1 —2727102D for an even number of y.

In other words for any y, Pr.[(z,y, 2) € L disagrees with (z,y) € L'] < 2-2P1(z]),
Thus, Pr.[(z,y,2) € L disagrees with (z,y) € L' for all y] < 2=2P1(12]) . gpa(l2]) = 9—pi(lz]),
Therefore,

¢ € ®,-BP,-L= Pr,[(z,y,2) € L for an odd number of y] > 1 — 27P1(Iz])

and
z ¢ @y -BP,- L= Pr;[(z,y,2) € L for an odd number of y] < 2—Pi(lzD)
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, as desired. W

Now, we discuss Step 2 of Toda’s proof. To this end, first we need to introduce some machinery, called
arithmetic on NTM. Let N1 and N be two NTM’s. Let nq(z) and na(z) be the number of accept paths of Ny
and N> on an input z. We define two new NTM’s N, (z,y) and N, (z,y) such that ny(z,y) = ni(z) +n2(y)
and n.(z) = n1(z) * na(y). We can define N, on input (x,y) as follows:

1. non-deterministically choose 1 or 2.
2. if 1 then run Ny (x)
3. if 2 then run Nx(y)
Machine N, is defined as follows:
1. run Ny(z)
2. if accept
(a) run Ny(y)

(b) if accept then accept else reject.

3. else reject

Here TIME(Ny(z,y)) = max{TIME(N;y(x)), TIME(N2(y))}+ land TIME(N.(z,y)) = TIM E(N1(z))+
TIME(Nx(y)). Now we can observe that using the constructions of Ny and N,, for any polynomial family
Py, (a) of degree poly(n) with positive coefficients at most 2P°'¥(") we can take any machine N that has
n(z) accept states and conform it to a machine Np(z) that has P, (n(z)) accept states and has polynomial
running time (we can construct the monomials X* by N, and the coefficients by N).

We can consider NTM’s by circuits. Assume we have two circuits Cy, Ca(C; () = M;(w;, ) taking n-bit
inputs and accepting n; and ny inputs respectively. We can observe that circuit Cy given by Cy (z,y) =
C1(x) ACy(z) accepts ny -ne inputs and circuit C, given by Ci(z,y,b) = (bACL(z))V (bACa(x)) has ny +na
accepting inputs. In the rest of the lecture, we use the circuit model.

Lemma 3 We can amplify BP - & - P.

Proof For simplicity, we assume the error is one-sided. Let L € BP, - ®, - P.
e If x € L then for all y’s, there is an odd number of 2’s for which C(z,y,2) = 1.
o If x & L then for at most 1— m fraction of y’s there is an odd number of 2’s for which C(z,y,2) = 1.

Now for amplification, choose y1,¥2, - ,¥m at random where m is polynomial in n. Now we can observe
that II7%, (#,,C(z,yi, 2;) = 1) is odd iff Vi, the number of z;'s for which C(z,y;,2;) =1 is odd. Here we
can construct such a polynomial using the concept of arithmetic on NTM introduced above. Here if x € L
then the probability that for all y;’s, we get an odd number of 2’s is 1. On the other hand, if x ¢ L with
probability at most (1 — m)m we get an odd number of 2’s for all y;’s. Now if m = n - poly(n) then the
probability is exponentially small in n.

Now we consider a slightly harder case. Againlet L € BP, - ®, - P such that,

e Ifz € L then for at most 1— fraction of y’s, there is an odd number of 2’s for which C(z,y, 2z) = 1.

1
poly(n)

e If z ¢ L then for every y, there is an even number of 2’s for which C(z,y,2) = 1.
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The main idea here is that we complement parities, take product and complement the result. More
precisely, we choose y1,y2, -+ ,¥m at random where m is polynomial in n. Now we observe 1 + IT"", (1 +
#..C(x,yi,2;) = 1) is odd iff Vi, the number of z;'s for which C(z,y;,2;) = 1 is even. We can observe
that if z ¢ L then our error probability is zero and if x € L the error probability is at most (1 — m)m
which is exponentially small in n when m = n poly(n).

Strictly speaking, in our above arguments, we need to consider the case where error is almost one-sided
(e.g. accept with probability 1 — ezp(—n) vs. 1 —1/poly(n).) However almost nothing changes in the proof.
|

Finally, we prove Step 5 of Toda’s proof.
Theorem 4 BP -& - P C P#F.

Proof Let L be a language in BP, - @, - P where y € {0,1}™. First we introduce Py,(a), a family of
polynomials, whose degree is poly(n) and whose coefficients are at most 2r0ly(n) gatisfying the following
properties:

1. P,(a) =0 mod 22" if a = 0 mod 2.
2. P,(a) = =1 mod 2*" ifa =1 mod 2.

In fact, P, can be constructed as follows. Let h(z) = 3z* 4+ 423. We can easily check that z = 0 mod 2™ —
h(z) =0 mod 22™ and z = —1 mod 2™ — h(x) = —1 mod 22" (just plug in z =0 and z = —1 + a2™ in
h(z)). Now, we define
h'(z) = h(z)
h(z) = he (h(z))
and let P,(a) = h'°82™1(q). We can check that P,(a) has all aforementioned properties and its degree is

polynomial in m, which is also polynomial in n (|y| is polynomial in n). We turn back to the statement of
the theorem. Let L = BP, - @, - L'. Using amplification mentioned in previous lemma, we know

1. if z € L, then Pry[|{z : L'(z,y,2) = 1}| is odd] > 3/4; and
2. if ¢ ¢ L, then Pry[|{z: L(z,y,2) = 1}| is odd] < 1/4.

Thus to decide whether x € L or not, we only need to distinguish whether Pr,[|{z : L(z,y, 2) = 1}| is odd)
is more than 3/4 or less than 1/4.

To distinguish these two in P#, we compute -, Po(3", #C(y,2)). Now for a fixed y, the value of
Po(3, #C(y,2)) is either 0 or —1 mod 22”. Because of the definition of P,, we can count the number
of y’s for which the value is -1. Now we can check whether Pry[|{z : L(z,y,2) = 1}| is odd)] is more than
3/4 or less than 1/4 by only one query of #P. Here the expression P,(a) is a one-variable polynomial, and
its degree is polynomial in n. Therefore using the concept of arithmetic on NTM, P,(a) is computable in
polynomial time. B

The rest of the proof of Toda’s theorem is just putting Steps 1-5 together and using a simple induction.
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