6.841/18.405J: Advanced Complexity Theory March 10, 2002

Lecture 10
Lecturer: Madhu Sudan Seribe: David Pritchard

The topics that will be covered today are:
1. Completing the proof of the Valiant-Vazirani Theorem

2. Introduction to the “Counting Problem” class #P

3. Begin the proof of Toda’s Theorem, PH C P#P

1 SAT and USAT

Last class we introduced the problem of unique satisfiability, USAT. Unlike the other problems we have so
far discussed, USAT is not a language but instead a “promise problem”: we want a TM that will decide if a
given formula ¢ is satisfiable or not under the condition that we promise the formula is either unsatisfiable
or uniquely satisfiable (that is, {z|¢(z) is true} is @) or has exactly one element). It is evident that USAT
is, in a sense, easier than SAT since anything that decides SAT will also decide USAT. However, if USAT is
easy enough then another surprising conclusion is true:

Theorem 1 (Valiant-Vazirani) USAT € P implies NP = RP.

We prove this by means of the following lemma, which effectively states that there is a randomized reduction
from SAT to USAT:

Lemma 2 In polynomial time we can probabilistically reduce a formula ¢ € SAT to another formula v such
that ¢ ¢ SAT = 1 ¢ SAT, and ¢ € SAT = with probability 1/poly(n),+ is uniquely satisfiable.

(Here n in the number of variables in phi). Lemma 2 implies Theorem 1 because, if USAT € P, then our
RP-machine for solving SAT could just perform this reduction polynomially many times (as many as is
needed to amplify the probability of finding at least one correct reduction to a constant) and accept iff our
USAT solver accepts any of these reductions'. We proceed, then, to prove the Lemma, as outlined in the
previous lecture.

1.1 Proving SAT reduces to USAT

Proof Strategy: Let ¥ (z) = ¢(x) A h(z) = 0 for a suitably chosen h.

First of all, we want to pick h from a pairwise independent, nice (as defined in the last lecture) family
of functions: so we will pick our h from the family {h4; : £ — Az + b} where all operations are done in
Zs, A is an m X n matrix, b is an m-element vector, and all elements of A and b are chosen uniformly from
{0,1}. (Note that these functions take elements of Z% to elements of Z%*, so the phrase “h(z) = 0” is a
vector equality.) Note that if ¢ is unsatisfiable, it is immediate that ¢ is unsatisfiable also: so henceforth,
we will concern ourselves only with the case that phi has one or more satisfying assignments.

The question remains, what should m be? Denote the set of all satisfying assignments of ¢ by S, and
let M = |S|. If we know the value of M, it turns out (as we will see shortly) that taking m such that
2m=2 < M < 2™ ! is a good choice. However, there is no cheap way to even approximate M, so what we
do is the following:

Choice of m: Choose m randomly (and uniformly) from {2,3,... ,n + 1}.

Since ¢ has between 0 and 2" satisfying assignments (its n boolean variables can only take on 2" distinct

values), we have a 1/n chance of picking the correct m.

1Since ¢ may be multiply-satisfiable it is possible that we are giving the USAT solver problems outside of
USATNQ U USATyRg; however the one-way error of our reduction means that it could only possibly accept formulae re-
duced from a satisfiable ¢.

10-1

1.2 How Well Does This Work?

In the 1/n chance that we have picked the correct m, we would like to know how likely it is that our new
formula has only one satisfying assignment.

Lemma 3 If2™ 2 < M < 2™ then 1 is uniquely satisfiable with probability > 1/8.

Proof

For a given boolean n-vector z in S, Let G, be the event (h(z) = 0 A Vy € S\{z}, h(y) # 0). Note that
the G, are mutually exclusive. Now, call y € S “bad for z” if h(z) = h(y) = 0.

We see that Pr[y is bad for z] is 1/2™ - 1/2™, since Pr[z=0]=1/2™, Pr[y=0]=1/2™, and h was selected
from a pairwise independent family of hash functions. Thus, by using the union-bound, Pr[Jy such that y is
bad for z] < |S — {z}|/2?™ < M/2?™. Hence

Pi[G,] = Prfh(x) = 0AVy € S\{z}, h(y) # 0] 1
= Pr[h(z) =0A—=(Jy : y is bad for z)] (2)
= Pr[h(z) = 0] — Pr[Jy : y is bad for z] 3)
> 1 _M 4)
om 22m
2m — M
- oM 5)
Which in turn gives us
Pr[4 is uniquely satisfiable] = Pr[dz : G,] (6)
L M) o
M 2™ -M
= 2y ®)
2m—2 2m—1
> 2 Q
= 1/8 (10)

(where step 9 comes from the inequality 2™ 2 < M < 2™~1), which completes the proof. ll

Now, to complete the proof of the lemma, we need only observe that this implies Pr[¢) is uniquely
satisfiable] > Pr[m was chosen correctly]-Pr[¢ is uniquely satisfiable |m is chosen correctly] > 1/8n.

1.3 Finishing Up

We still need to show that h(z) can actually be expressed as a boolean formula. By using a process similar
to that described in the proof of the Cook-Levin theorem, we can rewrite h(z) as Jy : n(x,y). Roughly
speaking, n(z,y) means “y represents a computation of a TM calculating h(x), and h(z) = 0”. Furthermore
it is evident from this process that at most one such y exists, so our new, uniquely satisfiable (or unsatisfiable)
formula would be ¢¥(z,y) = h(z) A n(z,y).

1.4 Remarks

This reduction is pretty remarkable, but there are stronger related reductions that remain open questions:

e Is there a non-probabilistic reduction from SAT to USAT?

10-2

e Is there a high-probability reduction from SAT to USAT?
o Is there a reduction from SAT to USAT whose accuracy we can check in polynomial time?

All of these questions have applications in cryptography, since USAT can be used to define a certain class
of one-way functions (as mentioned in the last lecture).

2 The Classes #P and p#P

Consider the problem of counting how many satisfying assignments a particular boolean formula has. How
difficult is this problem? How can we relate it to other problems? These questions motivate the definition
of the class #P :

Definition 4 #P is the collection of all functions f : {0,1}* — Z>¢ defined by f(z) = |{y|M(z,y) halts}|,
where M is any polynomial-time (in terms of the first argument) TM.

An equivalent definition would be to express f(z) as the number of accepting paths for a poly-time NTM
on input x. Note that this is a class of functions, not of languages; but we can change a function f into the
language Ly = {< z, f(x) > |z € Z} and a language into a function to {0,1}, so we mix the two freely.

The class P#P is the class of polynomial-time computable functions on TMs that have oracle access to
all #P functions (its queries are of the form < M,z > where z is any string and M is a machine of the type
described above).

The reductions of Cook and Karp are useful in proving completeness in this class, since they can be made
preserve the number of second-arguments for any particular input; because of this, some of the complete

functions for P#F are:
e #SAT: How many satisfying assignments does a formula ¢ have?
o #HAMCYC: How many hamiltonian cycles does a directed graph have?
e #CYC: How many (simple?) cycles does a directed graph have? (Can be obtained from #HAMCYC).
e How many matchings does a given bipartite graph have?
e What is the permanent of a given matrix? (See below for definition).

The fact that #CYC is complete for this class is quite surprising, since determining whether a graph on n
nodes has a cycle can be done in O(n*) time. The permanent of an n-by-n matrix A = {a;;} is given by

the formula N
permA = Z H Qi (i)
TES, i=1

where 7 € S,, means that we take the sum over all permutations 7 of {1,2,... ,n}. It is used in physics, for
example to compute the energies of certain systems. The determinant can be defined by an almost-identical

formula: .
detA = Z (—l)l(ﬂ—) H ai,,r(i)
TESh i=1

where [(7) is the “length”, or number of inversions in 7. However, despite the formulas’ similarities, the

permanent is P -complete and the determinant can be computed in O(n3) time (by using Gaussian elim-
ination, or LU-decomposition)!

We can see the upper bound P#P C PSPACE by a straightforward simulation argument; whether this
inequality is an equality is an open question. It is clear that NP,coNP C P#P since we can just query the

10-3

oracle with a SAT TM and return yes if at least one (respectively, all) of the computation paths accept.

BPP, RP, co-RP C P#P since we can just compute how many of the possible branches accept and take the
majority response. What about ¥¥'? Toda’s theorem answers this question:

Theorem 5 (Toda) Vi,XF C pHP.

We will (start to) prove this theorem after we introduce some notation.

3 Complexity Class Operators and Toda’s Theorem

An “operator” can be thought of a higher-order function: its input and output are complexity classes (sets
of languages). We write the result of applying operator O to the class C as O-C. A particularly simple
operator is -, defined by —-C = {L|L € C}. In words, = - C is the class of complements of languages in C.
Several other operators include:

e 3:Co {{al3y, (wy) € L}IL € C}
o V:Cr— {{z|Vy,(z,y) € L}|L € C}
o P :C+— {{z| for an odd number of y, (z,y) € L}|L € C}

e BP:C— {L'|AL € C: (x € L' — L contains at least a fraction ¢(n) of (z,y),x ¢ L' — L contains at
most a fraction s(n) of (z,y),c(n) — s(n) > 1/poly(n)}

Although these definitions are quite technical, they are most easily understood by a few examples:

e 3-P=NP
o V-P =coNP
e BP-P =BPP

e —-NP =coNP
° EI-E?,P:E?,P
o V.2 =TIF

3.1 Overview of Toda’s Theorem
In order to show that all Ef - P#P, we proceed in several steps:
1. 2P CBP- @I ,, and IIF CBP - @ IIF | (Extends Valiant-Vazirani.)
2. BP - @ -P amplifies error (Subtle.)
3. dBP--PCBP-P-P-PCBP-P - P (Surprising, but straightforward.)
4. BP-BP-@ -P C BP - -P (Not surprising, straightforward.)
5. BP-@-PC p#P (Completely separate theorem.)

Once we have shown all of this, an easy induction proof shows that each of the classes =F can be collapsed
into BP - € -P, which means that they are all subsetegs of p#P,

10-4

3.2 Proof of Step 1

We need to prove: £¥ C BP - @ -I1F |

We will show that -TQBF is in BP - @ -II¥ |, which is sufficient since this is a complete problem for
the class. Consider the formula 3z1Vzs ... Q;z;¢(21, 22, . .. 2,). We pick a pairwise-independent, nice hash
function h and consider the number of solutions to Vs ... Q;x;¢(x1, 22, ... 2,) A h(z1) = 0. With inverse
polynomial probability, there will be exactly zero or one solutions: so applying € to this problem gives
enough information to solve the original i-TQBF problem, and we are done.

We also need to prove: II¥ C BP - @ -II7 ;. Consider

nf = -.xf (11)
C ﬁ.Bp.e}.HkP_l (12)
= BP-~- @I, (13)
= BP-@-Hﬂl (14)

We just proved the first assertion; the second assertion follows, roughly, from the fact that BP is sym-
metric in allowing errors on both sides (ie both falsely accepting and falsely rejecting strings). The third
assertion can be thought of in two steps: first, that we can create a complement of a class being operated on
by @ by simply accepting one additional second-element for each first-element in the class (in other words,
adding one to an even number makes an odd number and vice-versa); secondly, that the class 1'[,61'371 is closed
under this operation.

3.3 To Be Continued next class...

10-5

