6.841/18.405J: Advanced Complexity Theory February 27, 2002

Lecture 7
Lecturer: Madhu Sudan Scribe: Deniss Cebikins

1. Review of definitions
Recall the definitions of BPP and RP.
A language L is in BPP if and only if there exists a polynomial time Turing machine M and a polynomial

p such that
2
Pr[M(z,y) accepts] > ¢ = 3 for all z €L
y

1
Pr[M(z,y) accepts] < s = 3 forall x ¢ L
y
where |y| = p(|z]).

A language L is in RP if and only if there exists a polynomial time Turing machine M and a polynomial p
such that

2
Pr[M(z,y) accepts] > ¢ = 3 forallz € L
y
Pr[M (z,y) accepts] = 0 for all z ¢ L
y
where |y| = p(|z]).

Our goal is to show that the above definitions do not really depend on the constants % and % In fact, in the
definition of BPP these constants can be replaced by any pair of constants (¢, s) provided that 0 < s < ¢ < 1.
Furthermore, we will show that instead of constants we can use functions ¢(n) = 1—e~%" and s(n) = e~9("),
where n = |z|, and ¢ is a polynomial.

2. Example: amplification of RP
We start with an example of amplification that shows that a language with the following properties is in RP.

Let L be a language for which there exists a polynomial time Turing machine M and a polynomial p such
that

1
Pr[M (z,y) accepts] > 2 for all strings = € L of length n
v
Pr[M(z,y) accepts] = 0 for all z ¢ L
y
where |y| = p(|z]). To show that L € RP we will construct another Turing machine M’ that satisfies the

conditions of the definition of RP stated above.

m(n)

Lemma. There exists a polynomial m(n) such that (1 —) <i

m(n)

Proof. Put m(n) = 2n?. Then (1 — #)m(n) Ne o2 =e ?=0.1353..< 1.

Let M'(-,-) be a Turing machine with the following algorithm:
- M’ takes as input a string of length n and a sequence § = {y1,¥2,...,Ym(n) } of strings, where |y;| = p(n)
and m(n) is a polynomial such that (1 — T}T)m(") <t

- For each ¢ between 1 and m(n) machine M' simulates M on input (z,y;)-

7-1

- M" accepts if and only if M(z,y;) has accepted for some i.

Clearly, M' is a polynomial time Turing machine, and § has polynomial length. Let us analyze the probability
of “success” of M'. First of all, it is obvious that

Pr[M'(z,y) accepts] = 0 for all z ¢ L
7

since M (z,y;) will never accept if x ¢ L. If z € L, and y1, ya, ... , are chosen independently at random,
then for each 7 the probability that M (x,y;) rejects is at most 1 — #, therefore the probability that M (z,y;)

m(n)

rejects for all ¢ is at most (1 — 25)™"", hence

1\™™ 2
Pr[M'(z,§ ts] >1—(1— = > -
yr[(z,y) accepts] > (n2> 23

It follows that L € RP.

3. Amplification of BPP

In this section we will show that for every language L in BPP and every polynomial ¢ there exists a polynomial
time Turing machine M'(-,-) and a polynomial u such that

Pr[M'(z,§) accepts] > 1 —e 9™ for all strings = € L of length n
]

Pr[M'(z,§) accepts] < e 9™ for all strings z ¢ L of length n
7
where |g| = u(n).
Since L € BPP, there exist a polynomial time Turing machine M and a polynomial p such that

Pr[M(z,y) accepts] > ¢ for all z € L
y

Pr[M(z,y) accepts] < s for all z ¢ L
y

where |y| = p(|z]). To make our result stronger we will assume that ¢ and s are arbitrary constants satisfying
0 < s < ¢ < 1 rather than 2 and 1.

As in the previous section, the input to the new machine M’ will be a string z of length n and a sequence
¥ =1{y1,¥2,-- -, Ym(n)} of independently selected random strings such that |y;| = p(n) for all i. We will see
how to choose the polynomial m(n) later.

The algorithm of M’ will be simple: for each i, simulate M on input (z,y;) and accept if the fraction of
i’sin {1,2,...,m(n)} for which M(z,y;) has accepted is at least <. (Thus, for example, if s = 0.86 and
¢ = 0.88 then M’ will accept if M(z,y;) accepts for at least 87% of indices ¢ in the set {1,2,...,m(n)}.)

In our analysis of the probability of correctness of this algorithm we will use the following lemma.

Lemma (Chernoff bound). Let D be a distribution on {0,1}. Suppose that z1,22,...,zxN are chosen inde-
pendently from D. Let p = E;ep[z]. Then for any A the following inequality holds:
Ty

Pr ’]:Vl i—p

7-2

We apply the lemma in the following way. For 1 < i < m(n), define

X = 1 if M(xz,y;) accepts
T 0 if M(x,y;) rejects

First let us consider the case x € L. Then u = Epx] > c. Put A = 5%, Then

m(n)

Pr [the fraction of i in {1,2,...,m(n)} for which M(z,y;) accepts is smaller than <t] <
c+s
S Pr [Xl + X2 + - +Xm(n) S (T) : m(n)]

S X
m(n)

cC— S8

<e (5

SPrl Bz

since the distance from p to (<£2) is at least (%5%). Therefore

c—s\2 m(n
Pr[M'(z, %) accepts] > 1 — e (57)" g
7

Similarly one can show that if x ¢ L then

E)Q.M

Pr[M'(z,y) accepts] < e (5 B
7

In order to finish the argument it remains to set m(n) = (20‘1_(8"))2.

Here is an application of this result:

Proposition (Adelman). BPP C P /poly'

Proof. Suppose that L is in BPP. Then there exists a polynomial time randomized Turing machine M’ such
that
z €L = M’ accepts z with probability 1 — 2~ ("*+1) or more

¢ L = M' accepts z with probability 2~ (1) or less

We claim that given n, there exists a string y such that M (z, y) accepts if and only if z € L for all z € {0,1}".
(Hence y is the advice to M corresponding to inputs of length n.)

Let us call a string y “bad” for x € {0,1}" if z is in L and M (z,y) rejects, or else if = is not in L and
M (z,y) accepts. We will also say that y is “good” for z if it is not “bad” for . For any fixed x we have

Pr[y is “bad” for z] < 2~ (1)
y

therefore

1
Pr[3z € {0,1}" | y is “bad” for z] < z Pr| y is “bad” for ¢] < 2™- 2~ (D) = 3
Y
ze{0,1}”

so Pry[y is “good” for all z] > 1. The claim and hence the proposition follow.

7-3

4. BPP and the Polynomial Hierarchy
We will show in this section that BPP C PH. In fact, we will prove that BPP C 221,).

Let L be a language in BPP. To show that L € EE we can represent the process of deciding whether z is in
L as a two round debate, in which Player 1 tries to prove that x € L, and Player 2 tries to prove that = ¢ L.
Player 1 passes some information to Player 2, Player 2 then replies to Player 1, and after the discussion an
independent “judge” decides the winner.

Since L € BPP, there exist a polynomial time Turing machine M and a polynomial p such that M takes as
input a string z of length n and a random string y € {0,1}?(™, and
z €L = M accepts with probability of more than 1

1
2p(n)

x ¢ L = M accepts with probability of less than

Let us fix z € {0,1}". In the two round debate Player 1 will try to find a bijection 7 : {0,1}?(™) — {0,1}?(™)
such that for every y € {0,1}?(™ at least one of y, 7(y) is “good” for x (recall that y is “good” for = if
xz € L& M(z,y) accepts). Player 2 will attempt to prove by counterexample that the bijection specified by
Player 1 does not satisfy the condition. In other words, Player 2 will try to find a string y such that both y
and 7(y) are “bad” for z.

Notice that if ¢ L then the fraction of “good” strings for z is too small for a satisfactory bijection 7 to
exist.

Define m,.(z) = z @ r. (Here “@” means XOR: for example, 01101 ¢ 10001 = 11100.)

Since the description of a bijection between {0,1}?(™ and {0,1}?(") is too long to be transmitted in poly-
nomial time, let us consider the following debate scheme. Player 1 chooses p(n) strings 1, ra, ..., Tp(n) of
length p(n), Player 2 chooses a string y € {0,1}?(™ and the “judge” decides the winner as follows: Player
1 wins (i.e. z € L) if at least one of M (x,m,(r;)) accepts, otherwise Player 2 wins (i.e. « ¢ L).

First let us show that if x € L then Player 1 can always choose r1,72,...,7p,) such that the “judge”
concludes that ¢ € L no matter what y is produced by Player 2. We write

1
Pr [M(z,my(r;)) rejects] < 3

T15-,Tp(n)

= Pr [M(z,m,(r;)) rejects for all 1 < i < p(n)] < 277

T1s:+Tp(n)

= Pr [Jy € {0,1}*™ such that Vi M(z,m,(r;)) rejects] < 1
)

7‘1,...,’)"1,("
= Pr [Vy € {0,1}*™ 3i M(z,m,(r;)) accepts] > 0
1y sTp(n)
The last inequality means that there exists a sequence r1,7, ..., such that for any string y the “judge”
algorithm will conclude that x € L.

Now suppose that z ¢ L. In this case for any sequence rq,72,. .., generated by Player 1 there must
exist a string y such that the “judge” algorithm concludes that z ¢ L. We have

1 1 1
Pr|M ; ts] < - Pr[di M ; ts] < c— ==
(M (2, (1) accepts] < 5 (31 M (z, () acoepts] < plrn) -~ = 3
hence for any sequence r1,72,...,7y(,) there exists y € {0, 1}”(") such that M(z,m,(r;)) rejects for all ¢, as
desired.

7-4

The following algorithm with two alternations decides L: first nondeterministically select r1,72,..., 7y,
then verify that for all y € {0, 1}”(") the “judge” algorithm determines that x € L. Since it takes polynomial
time to run the “judge” algorithm for a particular choice of r1,72,...,7yn) and y, it follows that L € EQP.

7-5

