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Strassen’s lower bound for polynomial evaluation and Bezout’s theorem

Recall Strassen’s algorithm from the previous lecture:
Given: (a0, . . . , an−1), (x1, . . . , xn) ∈ K, and polynomial p(x) =

∑n−1
i=0 aix

i

Task: find (z1, . . . , zn), zi = p(xi)
How many steps do we need to accomplish this task? Using the Fast Fourier Transform (FFT)

we need O(n log2 n) steps. Strassen was interested whether it can be done faster, and he showed that
Ω(n log n) steps are needed in algebraic computation trees.

Reminder of Algebraic Computation Trees

v1

v1 v1

:= x i

not 0= 0

Perform computations of the form vi := xj , or vi := vj · vk, where j, k < i and · ∈ {+,−,×, /} and
then branch depending on whether vi is 0 or not. The complexity of the computation is the depth of
the tree. By the time we reach the leaf level we want to know the values z1, . . . , zn.

Idea behind the lower bound:

• paths in the computation tree form a variety

• varieties are not “too complex” in small depth trees

• variety represented by FT is complex

Paths are varieties: We have an input (x1, . . . , xn), and as we go down the algebraic computation
tree we compute v1, v2, . . . , vi, and at a given stage the state variables are (x1, . . . , xn, v1, v2, . . . , vi).
Supposing that at node vi we branched left, i.e. vi = 0, we have our variety defined by the equations
coming from each node, which are equations of the form vk − xj = 0 or vi − (vj + vk) = 0, or, the +
substituted by one of the operations, plus, if we branched left we have in addition the equation vi = 0.
On the other hand, if we bracnhed right from vi, that is if vi 6= 0, then instead of the equation vi = 0,
we have another one, thanks to Rabinowich’s trick, namely, 1− vivi

−1 = 0. Thus, we see that paths are
determined by equations, and so are varieties. Also, each node adds two equations in total, and clearly
the degree of both equation is not more than 2, and so things are not getting “very complex.”
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Complexity measure

In order to talk about the complexity of computation we must have established a complexity measure
to start with. Since the paths in the algebraic computation trees correspond to varieties, it is natural
to take the “degree of the variety” to be the complexity measure. We are not going to give a formal
definition of this concept from algebraic geometry, rather we are going to give a more intuitive/elementary
definition. So, for us, the degree of the variety will roughly mean, the number of points that are in the
variety. Of course, there could be infinitely many points in the variety, in which case our definition is
not the most beneficial. But, let’s start with a simple case.

Consider polynomials f1, . . . , fn ∈ k[x1, . . . , xn]. Suppose that the number of points in the variety
V (f1, . . . , fn) is finite. In this case it may be reasonable to impose that the complexity measure is the
number of points in the variety. For example, if the polynomials f1, . . . , fn are all linear, the number of
points in the variety is at most 1. Also, if the polynomials f1, . . . , fn are defined by fi = p(xi), where p
is a polynomial of degree d, then the complexity is at most dn.

Given polynomials Q1(x, y) and Q2(x, y) of degrees d1 and d2 respectively, then either Q1 and Q2

have at most d1 · d2 common zeroes, or Q1 and Q2 have a common factor. For example, if Q1(x, y) =
(x+ y)(x2 + y2−1) and Q2(x, y) = (x+ y)(x3 + y2−3). Then, Q1 and Q2 have infinitely many common
zeroes, since all the zeroes of x + y = 0 are their zeroes too. By our complexity measure the varieties
defined by Q1(x, y) and Q2(x, y) would be the same. However, we would like some complexity measure
to deal with this kind of case too, which would be intrinsic to the variety and not the way it is specified.
Thus, we modify our definition, and set the complexity of a variety to be the number of isolated points
of the variety.

We have a geometric understanding of isolated points in real space, indeed, a point of a point set is
isolated if there is a neighborhood of it that contains no other point from the point set. Inspired by this
geometric notion, we define isolated points in general, as follows.

Definition. Given f1, . . . , fn ∈ k[x1, . . . , xn], and α ∈ kn, we say that α is an isolated point of
V (f1, . . . , fn) if fi(α) = 0 for all i ∈ [n], and the matrix M with entries Mij = ∂fi

∂xj
(α) is nonsingular.

Consider the variety defined by polynomials f1, . . . , fm ∈ k[x1, . . . , xn], with m < n, then the com-
plexity of the variety is equal to maxL(number of isolated points of (V ∩ U)), where L is a linear sub-
space. On the other hand, if m ≥ n, then we need to generalize our definition of an isolated point, as
follows:

Definition. Given f1, . . . , fm ∈ k[x1, . . . , xn], m ≥ n, and α ∈ kn, we say that α is an isolated point
of V (f1, . . . , fn) if fi(α) = 0 for all i ∈ [n], and the matrix M with entries Mij = ∂fi

∂xj
(α) has rank n.

Claim 1. If (f1, . . . , fm) and (g1, . . . , gm′) generate same ideal, then α is isolated with respect to
(f1, . . . , fm) if and only if α is isolated with respect to (g1, . . . , gm′).

From this we see that although an isolated point is defined through the basis of the ideal, it does not
depend in it, and is intrinsic to the ideal itself.

Claim 2. If α is isolated with respect to I it follows that α is isolated with respect to I(V (I)).

One more notion of complexity

Fix a polynomial p(x) = 0 with n distinct zeroes. Consider x1, . . . , xn ∈ B = {b1, . . . , bn}, and an
algebraic computation tree. There are nn possible inputs from Bn (corresponding to the root of the tree).

If the depth of the tree is D, then there exists a leaf node reached by |Bn|
2D inputs, since at every node we

branch to exactly two other nodes. At this leaf we have a point of form (x1, . . . , xn, p(x1), . . . , p(xn), . . .)
and project onto points (x1, . . . , xn, p(x1), . . . , p(xn)). We intersect this variety by ∩n

i=1zi.
Claim. Every (x1, . . . , xn) ∈ Bn that leads to the above leaf is an isolated point in the above variety.
Indeed, {zi = 0}i∈[n] ∩ V ⊂ V (I(z1 = p(x1) = 0, . . . , zn = p(xn) = 0)), and the complexity of

projected variety is at least |Bn|
2D .
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Bezout’s Theorem. (Simplified version) The complexity of V (f1, . . . , fm) is
∏m

i=1 deg fi.
Theorem. The complexity of a projection of a variety is less than or equal to the complexity of the

variety.
Backup: why is the projection onto points (x1, . . . , xn, p(x1), . . . , p(xn)) from (x1, . . . , xn, p(x1), . . . , p(xn), . . .)

a variety? Because of quantifier elimination. Vπ = {(α1, . . . , αn/2)|there exist αn/2+1, . . . , αn such that
(α1, . . . , αn) ∈ V }.

Now, assuming both theorems, we get that every leaf has complexity at most 4D. So, |B|n/2D ≤ 4D,
thus, D = Ω(n log n).

We will not prove the theorem about the complexity of the projection of the variety, but will give
an outline of the proof of Bezout’s theorem. The proof that we will follow is due to Wooley from 1996.
The idea of the proof is to suppose the opposite of what is stated and derive a contradiction. Indeed,
consider f1, . . . , fm ∈ k[x1, . . . , xn], m = n, and let S = {α1, . . . , αN} be a subset of the isolated zeroes,
and suppose N >

∏m
i=1 di, where di = deg fi. From here we wish to derive a contradiction.

We would like to construct a polynomial P (x1) such that P (α(1)) = 0 for every α = (α(1), . . . , α(n)) ∈
S, P is not identically zero, and deg P ≤

∏m
i=1 di. We would like to eliminate x2, . . . , xn, so we should

do quantifier elimination. This, however, does not quite work.
First construction. Let Q(y1, . . . , ym, x1) ∈ k′[y1, . . . , ym, x1] (where k′ is a slight modification of

k, see paper by Wooley) such that degx1
Q ≤

∏m
i=1 di, Q(f̃1, . . . , f̃m, x1) = 0 (where f̃i is a slight

modification of fi, see paper by Wooley), and Q 6∈ k′[y1, . . . , ym].
Now, set P0(x1) = Q(0, . . . , 0, x1). Then deg P0 ≤

∏m
i=1 di, and P (α(1)) = Q(0, . . . , 0, α(1)) =

Q(f1(α), . . . , fm(α), α(m)) = Q(f1(x), . . . , fm(x), x1)|x=α = 0. However, this construction fails, since we
cannot assert that P0 is not identically zero.

A new idea: Consider ring k[z]. There exist γ1, . . . , γm ∈ k[z] such that Q(γ1z, . . . , γmz, x1) 6= 0. Set
P1(x1) = Q(γ1z, . . . , γmz, x1). Then deg P1 ≤

∏m
i=1 di, and P1 is not identically zero. Also, P1(α

(1)) =
Q(γ1z, . . . , γmz, x1) = Q(0, . . . , 0, α(1)) mod z = 0 mod z. Now the proof uses essentially Hensel’s lifting
and linear algebra. Indeed, consider P (z), and α1, . . . , αk such that P (αi) = 0 mod N . If (αi−αj, N) =
1, then k ≤ degP . Also, to the initial set of conditions Q(y1, . . . , ym, x1) ∈ k′[y1, . . . , ym, x1] (where k′ is a

slight modification of k, see paper by Wooley) such that degx1
Q ≤

∏m
i=1 di, Q(f̃1, . . . , f̃m, x1) = 0 (where

f̃i is a slight modification of fi, see paper by Wooley), and Q 6∈ k′[y1, . . . , ym], condition f̃i = fi mod z
is added. For details see [Wooley, ’96].
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