Lecture 22

Today we present various algebraic models of computation, and discover a few lower bounds.

1 Algebraic models of computation

1.1 Considered problems

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a function that maps *n* elements of a ring *R* into *m* elements of the same ring. Given $x_1, x_2, \ldots, x_n \in \mathbb{R}$, compute $f(x_1, x_2, \ldots, x_n)$.

Alternatively, for a function $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$, given $x_1, x_2, \ldots, x_n \in \mathbb{R}$, determine $y_1, y_2, \ldots, y_n \in \mathbb{R}$ such that $f(x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_m) = 0$.

1.2 Uniform model of computation

In the late 1980's Blum, Shub and Smale came up with a uniform model model of computation. It was a "Turing machine" over a ring. In this lecture we consider only non-uniform models of computation.

1.3 Algebraic circuits (Straight line programs)

An *algebraic circuit* is an acyclic network of gates with the following properties:

- the circuit has n inputs accepting $x_1, x_2, \ldots, x_n \in R$ and an arbitrary number of constants α_i in R,
- the circuit has m outputs, $y_1, y_2, \ldots, y_m \in R$, and computes a function f, i.e. $f(x_1, \ldots, x_n) = (y_1, \ldots, y_m)$,
- each gate has two inputs and one output, and computes either the sum or product of input values (if R is a field, we allow as well division).

The number of gates is a complexity measure of algebraic circuits.

Note that every algebraic circuit is equivalent to a straight line program in which every instruction corresponds to a single gate and has the form " $v_i \leftarrow v_j \diamond v_k$ ", where \diamond is one of allowed operations.

1.4 Algebraic decision trees

An algebraic decision tree is a decision tree of the following properties:

- at each internal node we evaluate a polynomial of input elements x_1, x_2, \ldots, x_n , and branch, depending on whether the computed value of the polynomial equals 0 or not,
- each leaf contains a polynomial of the input elements which is the required values which we want to compute.

There are two complexity measures:

- 1. The depth of a tree.
- 2. The degree of polynomials at internal nodes.

1.5 Algebraic computation trees

An algebraic computation tree is a tree in which at each internal node we perform a single instruction of the form " $v_i \leftarrow v_j \diamond v_k$ ", where \diamond is one of basic operations allowed over R, and branch, depending on whether the computed value equals 0 or not.

2 Ostrowski's conjecture

2.1 The problem: univariate polynomial evaluation

Given $a_0, a_1, \ldots, a_n \in R$ and $x \in R$, compute

$$\sum_{i=0}^{n} a_i x^i.$$

2.2 Horner's rule

Horner's rule enables us to evaluate a polynomial by n additions and n multiplications in the following way:

 $v_1 \leftarrow a_n \cdot x + a_{n-1}$ $v_2 \leftarrow v_1 \cdot x + a_{n-2}$ \dots $v_i \leftarrow v_{i-1} \cdot x + a_{n-i}$ \dots $v_n \leftarrow v_{n-1} \cdot x + a_0$

2.3 The conjecture

Ostrowski came up in 1954 with the conjecture that Horner's rule is optimal, i.e. one needs n additions and n multiplications (in the algebraic circuit model). He managed to prove that n additions are necessary, and in 1966 Pan proved that so are n multiplications.

2.4 Ostrowski's lower bound

To show that we need n additions, we substitute x = 1, and the problem of evaluation of the polynomial reduces to the problem of computing the sum of coefficients.

Claim 1 To evaluate the sum of a_0 to a_n over a ring at least n additions are necessary in the algebraic circuit model.

Proof The proof goes by induction on n. For n = 1, all that we can compute, not using additions, is $ca_0^{d_0}a_1^{d_1}$, where $c \in R$, which definitely differs from $a_0 + a_1$. For n > 1, the first addition in any straight line program looks like

$$c_1 \prod_{i=1}^n a_i^{d_i} + c_2 \prod_{i=1}^n a_i^{e_i},$$

and since it does not make sense to add constants as they can be hardcoded, we can assume that one of d_i 's or e_i 's is nonzero. Without loss of generality $d_n \neq 0$, for $a_n = 0$ the first addend disappears, and by the induction assumption we still need to spend n-1 additions to compute $a_0 + a_1 + \cdots + a_{n-1}$.

2.5 Pan's lower bound

This time we substitute $a_0 = 0$. Note first that any algebraic circuit computes some polynomial in $R[a_1, a_2, \ldots, a_n, x]$. A multiplication $v_i \cdot v_k$ is *insignificant* if one of the following holds:

1. Both v_j and v_k belong to R[x].

2. One of v_i and v_k belongs to R.

Certainly, a multiplication that is not insignificant is *significant*. We will show that the number of significant multiplications is large enough in some more general case.

Claim 2 Let $f : \mathbb{R}^{n+1} \to \mathbb{R}$ be a function of the form

$$f(a_1, a_2, \dots, a_n, x) = \sum_{i=1}^k l_i(a_1, \dots, a_n) x^i + r(x) + l_0(a_1, a_2, \dots, a_n),$$

where each l_i is a linear function, and R is a field. An algebraic circuit computing f has at least rank $\{l_1, l_2, \ldots, l_k\}$ significant multiplications.

Proof Look at the first significant multiplication. It has the following form:

$$\left(\sum_{i} c_i a_i + c_0(x)\right) \cdot \left(\sum_{i} d_i a_i + d_0(x)\right).$$

Without loss of generality $c_1 \neq 0$, and we restrict (a_1, \ldots, a_n, x) so that the first term equals $c \in R$, achieving

$$c = \sum_{i} c_{i}a_{i} + c_{0}(x),$$

$$a_{1} = \frac{c - c_{0}(x) - \sum_{i=2}^{k} c_{i}a_{i}}{c_{1}} = l(a_{2}, \dots, a_{n}) + p(x)$$

for some linear function l and polynomial p. Now we have a circuit that using one fewer significant multiplication computes

$$\sum_{i=1}^{k} l_i \left(l(a_2, \dots, a_n) + p(x), a_2, \dots, a_n \right) x^i + r(x) + l_0 (l(a_2, \dots, a_n) + p(x), a_2, \dots, a_n)$$
$$= \sum_{i=1}^{k} l'_i (a_2, \dots, a_n) x^i + r'(x) + l'_0 (a_2, \dots, a_n),$$

where $l'_i(a_2, \ldots, a_n) = l_i(l(a_2, \ldots, a_n), a_2, \ldots, a_n)$, and by basic linear algebra

 $\operatorname{rank}\{l'_1, l'_2, \dots, l'_n\} \ge \operatorname{rank}\{l_1, l_2, \dots, l_n\} - 1.$

This implies by induction on the number of a_i 's that we need at least rank $\{l_1, l_2, \ldots, l_n\}$ significant multiplications.

3 Fixed coefficients

If coefficients of the polynomial are fixed, that is we compute a function $f_{a_0...a_n}: R \to R$ such that

$$f_{a_0\dots a_n}(x) = \sum a_i x^i,$$

it turns out that we need at most n/2 + 1 multiplications, and that for most choices of coefficients this number of multiplications is necessary. The main idea is that we can express f as

$$f(x) = q_1(x)(x^2 - b_1) + r_1(x),$$

there exists b_1 so that r_1 is of degree 0, and both b_1 and r_1 can be hardwired into a circuit. To show the lower bound we take a_0, a_1, \ldots, a_n transcendent over \widetilde{R} , and prove that if a program computes $\sum a_i x^i$ with k multiplications, then (a_1, \ldots, a_n) lie in a 2k-dimensional extension of \widetilde{R} .

4 Evaluation in *n* points

Given $a_0, \ldots, a_n, x_0, \ldots, x_n$ in a field K, our goal is to compute z_1 to z_n such that $z_i = \sum a_j x_i^j$. Using fast Fourier transform, we can achieve this in $O(n \log^{O(1)} n)$ time, and Strassen has proven that we need $\Omega(n \log n)$ operations in any algebraic computation tree. We will cover this topic in the next lecture.