Lecture 22
Lecturer: Madhu Sudan
Scribe: Krzysztof Onak

Today we present various algebraic models of computation, and discover a few lower bounds.

1 Algebraic models of computation

1.1 Considered problems

Let $f: R^{n} \rightarrow R^{m}$ be a function that maps n elements of a ring R into m elements of the same ring. Given $x_{1}, x_{2}, \ldots, x_{n} \in R$, compute $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

Alternatively, for a function $f: R^{n} \times R^{m} \rightarrow R$, given $x_{1}, x_{2}, \ldots, x_{n} \in R$, determine $y_{1}, y_{2}, \ldots, y_{n} \in R$ such that $f\left(x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{m}\right)=0$.

1.2 Uniform model of computation

In the late 1980's Blum, Shub and Smale came up with a uniform model model of computation. It was a "Turing machine" over a ring. In this lecture we consider only non-uniform models of computation.

1.3 Algebraic circuits (Straight line programs)

An algebraic circuit is an acyclic network of gates with the following properties:

- the circuit has n inputs accepting $x_{1}, x_{2}, \ldots, x_{n} \in R$ and an arbitrary number of constants α_{i} in R,
- the circuit has m outputs, $y_{1}, y_{2}, \ldots, y_{m} \in R$, and computes a function f, i.e. $f\left(x_{1}, \ldots, x_{n}\right)=$ $\left(y_{1}, \ldots, y_{m}\right)$,
- each gate has two inputs and one output, and computes either the sum or product of input values (if R is a field, we allow as well division).
The number of gates is a complexity measure of algebraic circuits.

Note that every algebraic circuit is equivalent to a straight line program in which every instruction corresponds to a single gate and has the form " $v_{i} \leftarrow v_{j} \diamond v_{k}$ ", where \diamond is one of allowed operations.

1.4 Algebraic decision trees

An algebraic decision tree is a decision tree of the following properties:

- at each internal node we evaluate a polynomial of input elements $x_{1}, x_{2}, \ldots, x_{n}$, and branch, depending on whether the computed value of the polynomial equals 0 or not,
- each leaf contains a polynomial of the input elements which is the required values which we want to compute.

There are two complexity measures:

1. The depth of a tree.
2. The degree of polynomials at internal nodes.

1.5 Algebraic computation trees

An algebraic computation tree is a tree in which at each internal node we perform a single instruction of the form " $v_{i} \leftarrow v_{j} \diamond v_{k}$ ", where \diamond is one of basic operations allowed over R, and branch, depending on whether the computed value equals 0 or not.

2 Ostrowski's conjecture

2.1 The problem: univariate polynomial evaluation

Given $a_{0}, a_{1}, \ldots, a_{n} \in R$ and $x \in R$, compute

$$
\sum_{i=0}^{n} a_{i} x^{i}
$$

2.2 Horner's rule

Horner's rule enables us to evaluate a polynomial by n additions and n multiplications in the following way:

$$
\begin{array}{rll}
v_{1} & \leftarrow & a_{n} \cdot x+a_{n-1} \\
v_{2} & \leftarrow & v_{1} \cdot x+a_{n-2} \\
& \ldots & \\
v_{i} & \leftarrow & v_{i-1} \cdot x+a_{n-i} \\
& \ldots & \\
v_{n} & \leftarrow & v_{n-1} \cdot x+a_{0}
\end{array}
$$

2.3 The conjecture

Ostrowski came up in 1954 with the conjecture that Horner's rule is optimal, i.e. one needs n additions and n multiplications (in the algebraic circuit model). He managed to prove that n additions are necessary, and in 1966 Pan proved that so are n multiplications.

2.4 Ostrowski's lower bound

To show that we need n additions, we substitute $x=1$, and the problem of evaluation of the polynomial reduces to the problem of computing the sum of coefficients.

Claim 1 To evaluate the sum of a_{0} to a_{n} over a ring at least n additions are necessary in the algebraic circuit model.

Proof The proof goes by induction on n. For $n=1$, all that we can compute, not using additions, is $c a_{0}^{d_{0}} a_{1}^{d_{1}}$, where $c \in R$, which definitely differs from $a_{0}+a_{1}$. For $n>1$, the first addition in any straight line program looks like

$$
c_{1} \prod_{i=1}^{n} a_{i}^{d_{i}}+c_{2} \prod_{i=1}^{n} a_{i}^{e_{i}},
$$

and since it does not make sense to add constants as they can be hardcoded, we can assume that one of d_{i} 's or e_{i} 's is nonzero. Without loss of generality $d_{n} \neq 0$, for $a_{n}=0$ the first addend disappears, and by the induction assumption we still need to spend $n-1$ additions to compute $a_{0}+a_{1}+\cdots+a_{n-1}$.

2.5 Pan's lower bound

This time we substitute $a_{0}=0$. Note first that any algebraic circuit computes some polynomial in $R\left[a_{1}, a_{2}, \ldots, a_{n}, x\right]$. A multiplication $v_{j} \cdot v_{k}$ is insignificant if one of the following holds:

1. Both v_{j} and v_{k} belong to $R[x]$.
2. One of v_{j} and v_{k} belongs to R.

Certainly, a multiplication that is not insignificant is significant. We will show that the number of significant multiplications is large enough in some more general case.
Claim 2 Let $f: R^{n+1} \rightarrow R$ be a function of the form

$$
f\left(a_{1}, a_{2}, \ldots, a_{n}, x\right)=\sum_{i=1}^{k} l_{i}\left(a_{1}, \ldots, a_{n}\right) x^{i}+r(x)+l_{0}\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

where each l_{i} is a linear function, and R is a field. An algebraic circuit computing f has at least $\operatorname{rank}\left\{l_{1}, l_{2}, \ldots, l_{k}\right\}$ significant multiplications.

Proof Look at the first significant multiplication. It has the following form:

$$
\left(\sum_{i} c_{i} a_{i}+c_{0}(x)\right) \cdot\left(\sum_{i} d_{i} a_{i}+d_{0}(x)\right) .
$$

Without loss of generality $c_{1} \neq 0$, and we restrict $\left(a_{1}, \ldots, a_{n}, x\right)$ so that the first term equals $c \in R$, achieving

$$
\begin{aligned}
c & =\sum_{i} c_{i} a_{i}+c_{0}(x) \\
a_{1} & =\frac{c-c_{0}(x)-\sum_{i=2}^{k} c_{i} a_{i}}{c_{1}}=l\left(a_{2}, \ldots, a_{n}\right)+p(x)
\end{aligned}
$$

for some linear function l and polynomial p. Now we have a circuit that using one fewer significant multiplication computes

$$
\begin{aligned}
\sum_{i=1}^{k} l_{i}\left(l\left(a_{2}, \ldots, a_{n}\right)\right. & \left.+p(x), a_{2}, \ldots, a_{n}\right) x^{i}+r(x)+l_{0}\left(l\left(a_{2}, \ldots, a_{n}\right)+p(x), a_{2}, \ldots, a_{n}\right) \\
& =\sum_{i=1}^{k} l_{i}^{\prime}\left(a_{2}, \ldots, a_{n}\right) x^{i}+r^{\prime}(x)+l_{0}^{\prime}\left(a_{2}, \ldots, a_{n}\right)
\end{aligned}
$$

where $l_{i}^{\prime}\left(a_{2}, \ldots, a_{n}\right)=l_{i}\left(l\left(a_{2}, \ldots, a_{n}\right), a_{2}, \ldots, a_{n}\right)$, and by basic linear algebra

$$
\operatorname{rank}\left\{l_{1}^{\prime}, l_{2}^{\prime}, \ldots, l_{n}^{\prime}\right\} \geq \operatorname{rank}\left\{l_{1}, l_{2}, \ldots, l_{n}\right\}-1
$$

This implies by induction on the number of a_{i} 's that we need at least rank $\left\{l_{1}, l_{2}, \ldots, l_{n}\right\}$ significant multiplications.

3 Fixed coefficients

If coefficients of the polynomial are fixed, that is we compute a function $f_{a_{0} \ldots a_{n}}: R \rightarrow R$ such that

$$
f_{a_{0} \ldots a_{n}}(x)=\sum a_{i} x^{i}
$$

it turns out that we need at most $n / 2+1$ multiplications, and that for most choices of coefficients this number of multiplications is necessary. The main idea is that we can express f as

$$
f(x)=q_{1}(x)\left(x^{2}-b_{1}\right)+r_{1}(x)
$$

there exists b_{1} so that r_{1} is of degree 0 , and both b_{1} and r_{1} can be hardwired into a circuit. To show the lower bound we take $a_{0}, a_{1}, \ldots, a_{n}$ transcendent over \widetilde{R}, and prove that if a program computes $\sum a_{i} x^{i}$ with k multiplications, then $\left(a_{1}, \ldots, a_{n}\right)$ lie in a $2 k$-dimensional extension of \widetilde{R}.

4 Evaluation in n points

Given $a_{0}, \ldots, a_{n}, x_{0}, \ldots, x_{n}$ in a field K, our goal is to compute z_{1} to z_{n} such that $z_{i}=\sum a_{j} x_{i}^{j}$. Using fast Fourier transform, we can achieve this in $O\left(n \log ^{O(1)} n\right)$ time, and Strassen has proven that we need $\Omega(n \log n)$ operations in any algebraic computation tree. We will cover this topic in the next lecture.

