
6.885 Algebra and Computation November 28, 2005

Lecture 22
Lecturer: Madhu Sudan Scribe: Krzysztof Onak

Today we present various algebraic models of computation, and discover a few lower bounds.

1 Algebraic models of computation

1.1 Considered problems

Let f : Rn → Rm be a function that maps n elements of a ring R into m elements of the same ring.
Given x1, x2, . . . , xn ∈ R, compute f(x1, x2, . . . , xn).

Alternatively, for a function f : Rn×Rm → R, given x1, x2, . . . , xn ∈ R, determine y1, y2, . . . , yn ∈ R
such that f(x1, x2, . . . , xn, y1, y2, . . . , ym) = 0.

1.2 Uniform model of computation

In the late 1980’s Blum, Shub and Smale came up with a uniform model model of computation. It was
a “Turing machine” over a ring. In this lecture we consider only non-uniform models of computation.

1.3 Algebraic circuits (Straight line programs)

An algebraic circuit is an acyclic network of gates with the following properties:

• the circuit has n inputs accepting x1, x2, . . . , xn ∈ R and an arbitrary number of constants αi in
R,

• the circuit has m outputs, y1, y2, . . . , ym ∈ R, and computes a function f , i.e. f(x1, . . . , xn) =
(y1, . . . , ym),

• each gate has two inputs and one output, and computes either the sum or product of input values
(if R is a field, we allow as well division).

The number of gates is a complexity measure of algebraic circuits.

only over a field

×

xn α1 α2x2x1 αk. . . . . .

f(x1, x2, . . . , xn)

+ /

Note that every algebraic circuit is equivalent to a straight line program in which every instruction
corresponds to a single gate and has the form “vi ← vj ♦ vk”, where ♦ is one of allowed operations.
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1.4 Algebraic decision trees

An algebraic decision tree is a decision tree of the following properties:

• at each internal node we evaluate a polynomial of input elements x1, x2, . . . , xn, and branch,
depending on whether the computed value of the polynomial equals 0 or not,

• each leaf contains a polynomial of the input elements which is the required values which we want
to compute.

p1(x1, . . . , xn)

x1, . . . , xn

f2(x1, . . . , xn) = 0? f3(x1, . . . , xn) = 0?

f1(x1, . . . , xn) = 0?

. . .. . . . . . . . .

. . .

pl(x1, . . . , xn)

= 0 6= 0

There are two complexity measures:

1. The depth of a tree.

2. The degree of polynomials at internal nodes.

1.5 Algebraic computation trees

An algebraic computation tree is a tree in which at each internal node we perform a single instruction
of the form “vi ← vj ♦ vk”, where ♦ is one of basic operations allowed over R, and branch, depending
on whether the computed value equals 0 or not.

vi ← vj♦vk

vi = 0 vi 6= 0

♦ ∈ {+,−,×, /}
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2 Ostrowski’s conjecture

2.1 The problem: univariate polynomial evaluation

Given a0, a1, . . . , an ∈ R and x ∈ R, compute

n∑

i=0

aix
i.

2.2 Horner’s rule

Horner’s rule enables us to evaluate a polynomial by n additions and n multiplications in the following
way:

v1 ← an · x + an−1

v2 ← v1 · x + an−2

. . .

vi ← vi−1 · x + an−i

. . .

vn ← vn−1 · x + a0

2.3 The conjecture

Ostrowski came up in 1954 with the conjecture that Horner’s rule is optimal, i.e. one needs n additions
and n multiplications (in the algebraic circuit model). He managed to prove that n additions are
necessary, and in 1966 Pan proved that so are n multiplications.

2.4 Ostrowski’s lower bound

To show that we need n additions, we substitute x = 1, and the problem of evaluation of the polynomial
reduces to the problem of computing the sum of coefficients.

Claim 1 To evaluate the sum of a0 to an over a ring at least n additions are necessary in the algebraic

circuit model.

Proof The proof goes by induction on n. For n = 1, all that we can compute, not using additions, is
cad0

0 ad1

1 , where c ∈ R, which definitely differs from a0 + a1. For n > 1, the first addition in any straight
line program looks like

c1

n∏

i=1

adi

i + c2

n∏

i=1

aei

i ,

and since it does not make sense to add constants as they can be hardcoded, we can assume that one of
di’s or ei’s is nonzero. Without loss of generality dn 6= 0, for an = 0 the first addend disappears, and by
the induction assumption we still need to spend n− 1 additions to compute a0 + a1 + · · ·+ an−1.

2.5 Pan’s lower bound

This time we substitute a0 = 0. Note first that any algebraic circuit computes some polynomial in
R[a1, a2, . . . , an, x]. A multiplication vj · vk is insignificant if one of the following holds:

1. Both vj and vk belong to R[x].
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2. One of vj and vk belongs to R.

Certainly, a multiplication that is not insignificant is significant. We will show that the number of
significant multiplications is large enough in some more general case.

Claim 2 Let f : Rn+1 → R be a function of the form

f(a1, a2, . . . , an, x) =

k∑

i=1

li(a1, . . . , an)xi + r(x) + l0(a1, a2, . . . , an),

where each li is a linear function, and R is a field. An algebraic circuit computing f has at least

rank{l1, l2, . . . , lk} significant multiplications.

Proof Look at the first significant multiplication. It has the following form:
(
∑

i

ciai + c0(x)

)
·

(
∑

i

diai + d0(x)

)
.

Without loss of generality c1 6= 0, and we restrict (a1, . . . , an, x) so that the first term equals c ∈ R,
achieving

c =
∑

i

ciai + c0(x),

a1 =
c− c0(x) −

∑k

i=2 ciai

c1
= l(a2, . . . , an) + p(x)

for some linear function l and polynomial p. Now we have a circuit that using one fewer significant
multiplication computes

k∑

i=1

li (l(a2, . . . , an) + p(x), a2, . . . , an)xi + r(x) + l0(l(a2, . . . , an) + p(x), a2, . . . , an)

=

k∑

i=1

l′i(a2, . . . , an)xi + r′(x) + l′0(a2, . . . , an),

where l′i(a2, . . . , an) = li(l(a2, . . . , an), a2, . . . , an), and by basic linear algebra

rank{l′1, l
′

2, . . . , l
′

n} ≥ rank{l1, l2, . . . , ln} − 1.

This implies by induction on the number of ai’s that we need at least rank{l1, l2, . . . , ln} significant
multiplications.

3 Fixed coefficients

If coefficients of the polynomial are fixed, that is we compute a function fa0...an
: R→ R such that

fa0...an
(x) =

∑
aix

i,

it turns out that we need at most n/2 + 1 multiplications, and that for most choices of coefficients this
number of multiplications is necessary. The main idea is that we can express f as

f(x) = q1(x)(x2 − b1) + r1(x),

there exists b1 so that r1 is of degree 0, and both b1 and r1 can be hardwired into a circuit. To show the
lower bound we take a0, a1, . . . , an transcendent over R̃, and prove that if a program computes

∑
aix

i

with k multiplications, then (a1, . . . , an) lie in a 2k-dimensional extension of R̃.
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4 Evaluation in n points

Given a0, . . . , an, x0, . . . , xn in a field K, our goal is to compute z1 to zn such that zi =
∑

ajx
j
i . Using

fast Fourier transform, we can achieve this in O(n logO(1) n) time, and Strassen has proven that we need
Ω(n log n) operations in any algebraic computation tree. We will cover this topic in the next lecture.
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