Lecture 19

Lecturer: Madhu Sudan

1 Today

- Finish Groebner Basis (Recognition)
- Complexity of Ideal Membership

2 Groebner Bases

Recall that for an ideal J, we call g_{1}, \ldots, g_{t} a Groebner Basis for J if

- $\forall i, g_{i} \in J$
- $I\left(L T\left(g_{1}\right), L T\left(g_{2}\right), \ldots, L T\left(g_{t}\right)\right)=I(L T(J))$

We further define two notions.
We say r is a weak remainder of f w.r.t. g_{1}, \ldots, g_{t} if $f=r+\sum g_{i} q_{i}$ and \forall monomials m of r and $\forall i$, $L T\left(g_{i}\right)$ does not divide m.

We say $\left(q_{1}, \ldots, q_{m}\right)$ is a strong quotient for f w.r.t. g_{1}, \ldots, g_{t} if $\forall i, \operatorname{deg}\left(g_{i} q_{i}\right) \leq \operatorname{deg} f$.
Recall that when we run our algorithm $D I V I D E$, we get a weak remainder.
For two polynomials f, g, we define the Syzygy to be the linear combination of them which cancels leading terms; i.e.

$$
S(f, g)=L C(g) \frac{M}{\operatorname{LM}(f)} f-L C(f) \frac{M}{\operatorname{LM(g)} g}
$$

where $M=L C M(L M(f), L M(g))$.
We can now give the test for a GB:

- Given $g_{1}, \ldots g_{t}$ as input
- Check that $\forall i, j, \operatorname{DIVIDE}\left(S\left(g_{i}, g_{j}\right), g_{1}, \ldots, g_{t}\right)$ returns (0, strong quotient).
- Then $\left\{g_{i}\right\}$ form a GB iff it passes the check.

We now prove the validity of this test:
Proof Take $f \in J=I\left(g_{1}, \ldots, g_{t}\right)$. We need to show that $L T(f) \in I\left(L T\left(g_{1}\right), \ldots, L T\left(g_{t}\right)\right)$.
First write $f=\sum m_{j} g_{i_{j}}$ where $i_{j} \in\{1, \ldots, t\}$. Amongst all such representations, pick the reduced form; i.e. the sequence with the smallest length satisfying $\operatorname{deg}\left(m_{1} g_{i_{1}}\right) \geq \operatorname{deg}\left(m_{2} g_{i_{2}}\right) \geq \ldots$ and also, if $\operatorname{deg}\left(m_{j} g_{i_{j}}\right)=\operatorname{deg}\left(m_{j+1} g_{i_{j+1}}\right.$, then $i_{j}<i_{j+1}$.

Claim: $L T(f)=L T\left(m_{1} g_{i_{1}}\right)$.
Wlog, we can take $f=m_{1} g_{1}+m_{2} g_{2}+\ldots$. Suppose $\operatorname{deg}\left(m_{1} g_{1}\right)=\operatorname{deg}\left(m_{2} g_{2}\right)$. In this case we want to say that $m_{2} g_{2}=m_{1} g_{1}+$ lower degree terms. We use the Syzygy property:

$$
\begin{aligned}
& m_{1} g_{1}=w \frac{M}{L M\left(g_{1}\right)} g_{1} \\
& m_{2} g_{2}=w \frac{M}{L M\left(g_{2}\right)} g_{2} \\
& S\left(g_{1}, g_{2}\right)=0+\sum g_{i} q_{i}
\end{aligned}
$$

where $\operatorname{degree}\left(g_{i} q_{i}\right) ; \operatorname{degree}\left(\frac{M}{L M\left(g_{1}\right)} g_{1}\right)$.
So, $m_{2} g_{2}=m_{1} g_{1}+\sum g_{i} q_{i}$. Thus reducedness is violated, and hence $\operatorname{deg}\left(m_{1} g_{1}\right)>\operatorname{deg}\left(m_{2} g_{2}\right)$, thus $L T(f)=L T\left(m_{1} g_{1}\right)$, as desired.

3 Complexity of Ideal Membership Problem

- Given $f_{0}, \ldots f_{m} \in K\left[X_{1}, \ldots, X_{n}\right]$ of degree d
- Decide if $\exists q_{1}, \ldots q_{m}$ s.t. $f_{0}=\sum f_{i} q_{i}$.

We wish to bound the complexity (in operations over K) in terms of n, d, m.
Theorem 1 [Mayr, Meyer '81] $I M \in E X P S P A C E=S P A C E\left(2^{\text {poly }(n, d, m)}\right)$ and further, $I M$ is EXPSPACE hard!

3.1 Hardness

The reduction is from the Commutative word equivalence problem (CWEP).

- Input:
- Σ a finite alphabet, $|\Sigma|=n$.
- Rules $\alpha_{1}=\beta_{1}, \alpha_{2}=\beta_{2}, \ldots, \alpha_{m}=\beta_{m}, \alpha_{i}, \beta_{i} \in \Sigma^{*}$
- $\alpha, \beta \in \Sigma^{*}$
- Goal:
- Determine if $\alpha=\beta$.
- Using given rules and using commutativity of symbols in Σ.

It is known that $C W E P$ is $E X P S P A C E$ hard.
The reduction is obvious. Every word is a monomial. Rules are binomials $f_{i}(x)=\operatorname{mono}\left(\alpha_{i}\right)-$ $\operatorname{mono}\left(\beta_{i}\right)$. Membership in CWEP is asking if $f_{0}(x)=\operatorname{mono}\left(\alpha_{0}\right)-\operatorname{mono}\left(\beta_{0}\right) \in I$? Thus $I M$ is EXPSPACE hard.

3.2 Upper bound

This result rests on 2 facts:

- Inverting a $m \times n$ linear system can be done in $\operatorname{SPACE}(\operatorname{polylog}(m+n))$.
- A 1926 result of Hermann that says that there exist q_{i} with $\operatorname{deg}\left(q_{i}\right) \leq D=(m d)^{2^{n}}$

Note that finding q_{i} (if they exist) can be posed as inverting a linear system.
We will prove Hermann's result. We want to get an understanding of solutions to the following kind of question, a linear equation over a ring:

- Determine if $\exists q_{1}, q_{2}, \ldots, q_{m} \in K\left[X_{1}, \ldots, X_{n}\right]$ s.t. $\sum f_{i} q_{i}=f_{0}$

Note that this question can be posed as a linear system over a field, a kind of question that we do understand:

- Determine $\exists q_{i, \alpha} \in K$ s.t. $\forall \beta \sum_{i, \alpha+\alpha^{\prime}=\beta} q_{i, \alpha} f_{i, \alpha^{\prime}}=f_{0, \beta}$, where β ranges over all multi-indices over n variables of degree $\leq \operatorname{deg}\left(f_{0}\right)$

In order to bound the degree, we introduce a common generalization, the j-variable linear system, that will help us make the transition between the problems

- Given polynomials $f_{i, \alpha} \in K\left[X_{1}, \ldots, X_{j}\right], i \in\{0,1, \ldots, m\}, \alpha \in A$
- Determine if $\exists q_{i} \in K\left[X_{1}, \ldots, X_{j}\right]$ s.t. $\forall \alpha \in A, \sum_{i} q_{i} f_{i, \alpha}=f_{0, \alpha}$

The strategy will be to eliminate 1 variable at a time. The crux of the Hermann result is that a j variable linear system with M equations and n unknowns reduces to a $j-1$ variable linear system in $\operatorname{poly}(M, n, d)$ equations and $\operatorname{poly}(M, n, d)$ unknowns.
Lemma 2 Let $f_{i} \in K\left[X_{1}, \ldots, X_{j}\right]$. Suppose $\exists q_{i} \in K\left[X_{1}, \ldots, X_{j}\right]$ with X_{j} degree $<D$ satisfying $f_{0}=$ $\sum_{i=1}^{m} f_{i} q_{i}$. Then the following system of equations over has a solution $q_{i, \alpha}^{\prime} \in K\left[X_{1}, \ldots, X_{j-1}\right]$

$$
\forall \gamma<D, \sum_{i, \beta, \alpha, \beta+\alpha=\gamma} f_{i, \beta} q_{i, \alpha}^{\prime}=f_{0, \gamma}
$$

where $f_{i, \beta} \in K\left[X_{1}, \ldots, X_{j-1}\right.$ is the coefficient of X_{j}^{β} in f_{i}. Furthermore, any solution to this system of equations yields a solution to the original equation with X_{j} degree $<D$.

Proof Simply take $q_{i, \alpha}^{\prime}$ to be the coefficient of X_{j}^{α} in q_{i}.
Definition 3 Let R be a ring. We call an $r \times s$ matrix A with entries in $R[z]$ good if

- $r<s$
- There exists an $r \times r$ minor \tilde{A} with $\operatorname{det} \tilde{A}$ monic and nonzero.

Lemma 4 Let R be a ring. Let A be a good matrix in $R[z]$ with each entry having degree $\leq D$. Let b be a vector with entries in $R[z]$ with each entry having degree $\leq D$. Suppose $A x=b$ has a solution in $R[z]$. Then $A x=b$ has a solution with each entry having degree $\leq O(M D)$.
Proof Consider the minor \tilde{A} guaranteed to exist by the goodness of A. We can rearrange the columns and have $A=[\tilde{A} \mid B]$. For a vector w with $w^{T}=\left(w_{1} \mid w_{2}\right)$, we have that $A w=\tilde{A} w_{1}+B w_{2}$. Thus, if we pick w_{2} arbitrarily, then if $A w=b$, it must be that $w_{1}=\tilde{A}^{-1}\left(b-B w_{2}\right)$.

Note that $\tilde{A}^{-1}=\frac{\operatorname{Adj}(\tilde{A})}{\operatorname{det}(\tilde{A})}$. Thus if $\left(x_{1}, x_{2}\right)$ is a solution, then for any vector c, so is $w=\left(x_{1}+\right.$ $\left.\operatorname{Adj}(\tilde{A}) B c, x_{2}-\operatorname{det}(\tilde{A}) c\right)$. Now, by the goodness hypothesis, $\operatorname{det}(\tilde{A})$ is monic, and since its degree \leq $O(M D)$, then by choosing c appropriately, make $\operatorname{deg}\left(w_{2}\right)=O(M D)$. Then, $\operatorname{deg}\left(w_{1}\right)<\operatorname{deg}\left(\frac{\operatorname{Adj}(\tilde{A})}{\operatorname{det}(\tilde{A})}\left(b-B w_{2}\right)\right)$ which $=O(M D)$, as desired.

With this lemma in hand, it is essentially clear what to do. Suppose we are given a system of M equations $A x=b$ with coefficients in $R=K\left[X_{1}, \ldots, X_{j}\right]$ and degree bounded by D. Suppose that we also know that there is a solution to this system. Then by lemma 4 , there is a solution with X_{j} degree $<O(M D)$. Thus by lemma 2 we can reduce to $O\left(M^{2} D\right)$ equations in over $K\left[X_{1}, \ldots, X_{j-1}\right]$ with degree at most D. Continuing this way, we get a linear system over K which has a solution, from which we can reconstruct a solution to the original problem with degree at most $(M D)^{O\left(2^{n}\right)}$ (note that the degree was squaring at each stage).

Actually, to apply lemma 4 we required some goodness from our linear system at each stage. This can be achieve by doing the following at every stage: we throw away all row dependencies to make the matrix of full row rank. Then applying a random linear transformation to the $X_{1}, \ldots X_{n}$, we get that with high probability for any single polynomial and any fixed variable, the modified polynomial will be monic in that variable. This holds in particular for the determinant of a nonsingular $r \times r$ minor of our A, thus making it good.

To see the high probability result, let us be a bit more precise. Given a polynomial $f(x)$ homogenous of degree n, not identically 0 . Pick a random orthogonal matrix P (uniform from $S^{n-1}, S^{n-2}, \ldots, S_{0}$) and consider the polynomial $g(x)=f(P x)$. Then the resulting polynomial is homogenous of degree n and is not monic if and only if $g(1,0, \ldots, 0)=0$. However $P \cdot(1,0, \ldots 0)$ is a point uniformly chosen from the surface of the sphere and by Schwarz Zippel, $f(P \cdot(1,0, \ldots, 0))$ is nonzero almost everywhere. Thus w.h.p. g is monic.

