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1 Today

• Finish Groebner Basis (Recognition)

• Complexity of Ideal Membership

2 Groebner Bases

Recall that for an ideal J , we call g1, . . . , gt a Groebner Basis for J if

• ∀i, gi ∈ J

• I(LT (g1), LT (g2), . . . , LT (gt)) = I(LT (J))

We further define two notions.
We say r is a weak remainder of f w.r.t. g1, . . . , gt if f = r +

∑
giqi and ∀ monomials m of r and ∀i,

LT (gi) does not divide m.
We say (q1, . . . , qm) is a strong quotient for f w.r.t. g1, . . . , gt if ∀i, deg(giqi) ≤ degf .
Recall that when we run our algorithm DIV IDE, we get a weak remainder.
For two polynomials f, g, we define the Syzygy to be the linear combination of them which cancels

leading terms; i.e.

S(f, g) = LC(g)
M

LM(f)
f − LC(f)

M

LM(g)
g

where M = LCM(LM(f), LM(g)).
We can now give the test for a GB:

• Given g1, . . . gt as input

• Check that ∀i, j, DIV IDE(S(gi, gj), g1, . . . , gt) returns (0,strong quotient).

• Then {gi} form a GB iff it passes the check.

We now prove the validity of this test:
Proof Take f ∈ J = I(g1, . . . , gt). We need to show that LT (f) ∈ I(LT (g1), . . . , LT (gt)).

First write f =
∑

mjgij where ij ∈ {1, . . . , t}. Amongst all such representations, pick the reduced
form; i.e. the sequence with the smallest length satisfying deg(m1gi1) ≥ deg(m2gi2) ≥ . . . and also, if
deg(mjgij ) = deg(mj+1gij+1 , then ij < ij+1.

Claim: LT (f) = LT (m1gi1).
Wlog, we can take f = m1g1 + m2g2 + . . .. Suppose deg(m1g1) = deg(m2g2). In this case we want

to say that m2g2 = m1g1+ lower degree terms. We use the Syzygy property:

m1g1 = w
M

LM(g1)
g1

m2g2 = w
M

LM(g2)
g2

S(g1, g2) = 0 +
∑

giqi

where degree(giqi) ¡ degree( M
LM(g1)

g1).
So, m2g2 = m1g1 +

∑
giqi. Thus reducedness is violated, and hence deg(m1g1) > deg(m2g2), thus

LT (f) = LT (m1g1), as desired.
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3 Complexity of Ideal Membership Problem

• Given f0, . . . fm ∈ K[X1, . . . , Xn] of degree d

• Decide if ∃q1, . . . qm s.t. f0 =
∑

fiqi.

We wish to bound the complexity (in operations over K) in terms of n, d,m.

Theorem 1 [Mayr, Meyer ’81] IM ∈ EXPSPACE = SPACE(2poly(n,d,m)) and further, IM is
EXPSPACE hard!

3.1 Hardness

The reduction is from the Commutative word equivalence problem (CWEP).

• Input:

• Σ a finite alphabet, |Σ| = n.

• Rules α1 = β1, α2 = β2, . . . , αm = βm, αi, βi ∈ Σ∗

• α, β ∈ Σ∗

• Goal:

• Determine if α = β.

• Using given rules and using commutativity of symbols in Σ.

It is known that CWEP is EXPSPACE hard.
The reduction is obvious. Every word is a monomial. Rules are binomials fi(x) = mono(αi) −

mono(βi). Membership in CWEP is asking if f0(x) = mono(α0) − mono(β0) ∈ I? Thus IM is EX-
PSPACE hard.

3.2 Upper bound

This result rests on 2 facts:

• Inverting a m× n linear system can be done in SPACE(polylog(m + n)).

• A 1926 result of Hermann that says that there exist qi with deg(qi) ≤ D = (md)2
n

Note that finding qi (if they exist) can be posed as inverting a linear system.
We will prove Hermann’s result. We want to get an understanding of solutions to the following kind

of question, a linear equation over a ring:

• Determine if ∃q1, q2, . . . , qm ∈ K[X1, . . . , Xn] s.t.
∑

fiqi = f0

Note that this question can be posed as a linear system over a field, a kind of question that we do
understand:

• Determine ∃qi,α ∈ K s.t. ∀β ∑
i,α+α′=β qi,αfi,α′ = f0,β , where β ranges over all multi-indices over

n variables of degree ≤ deg(f0)

In order to bound the degree, we introduce a common generalization, the j-variable linear system,
that will help us make the transition between the problems

• Given polynomials fi,α ∈ K[X1, . . . , Xj ], i ∈ {0, 1, . . . ,m}, α ∈ A
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• Determine if ∃qi ∈ K[X1, . . . , Xj ] s.t. ∀α ∈ A,
∑

i qifi,α = f0,α

The strategy will be to eliminate 1 variable at a time. The crux of the Hermann result is that a j
variable linear system with M equations and n unknowns reduces to a j − 1 variable linear system in
poly(M,n, d) equations and poly(M, n, d) unknowns.

Lemma 2 Let fi ∈ K[X1, . . . , Xj ]. Suppose ∃qi ∈ K[X1, . . . , Xj ] with Xj degree < D satisfying f0 =∑m
i=1 fiqi. Then the following system of equations over has a solution q′i,α ∈ K[X1, . . . , Xj−1]

∀γ < D,
∑

i,β,α,β+α=γ

fi,βq′i,α = f0,γ

where fi,β ∈ K[X1, . . . , Xj−1 is the coefficient of Xβ
j in fi. Furthermore, any solution to this system of

equations yields a solution to the original equation with Xj degree < D.

Proof Simply take q′i,α to be the coefficient of Xα
j in qi.

Definition 3 Let R be a ring. We call an r × s matrix A with entries in R[z] good if

• r < s

• There exists an r × r minor Ã with det Ã monic and nonzero.

Lemma 4 Let R be a ring. Let A be a good matrix in R[z] with each entry having degree ≤ D. Let b
be a vector with entries in R[z] with each entry having degree ≤ D. Suppose Ax = b has a solution in
R[z]. Then Ax = b has a solution with each entry having degree ≤ O(MD).

Proof Consider the minor Ã guaranteed to exist by the goodness of A. We can rearrange the columns
and have A = [Ã|B]. For a vector w with wT = (w1|w2), we have that Aw = Ãw1 + Bw2. Thus, if we
pick w2 arbitrarily, then if Aw = b, it must be that w1 = Ã−1(b−Bw2).

Note that Ã−1 = Adj(Ã)

det(Ã)
. Thus if (x1, x2) is a solution, then for any vector c, so is w = (x1 +

Adj(Ã)Bc, x2 − det(Ã)c). Now, by the goodness hypothesis, det(Ã) is monic, and since its degree ≤
O(MD), then by choosing c appropriately, make deg(w2) = O(MD). Then, deg(w1) < deg

(
Adj(Ã)

det(Ã)
(b−Bw2)

)

which = O(MD), as desired.

With this lemma in hand, it is essentially clear what to do. Suppose we are given a system of M
equations Ax = b with coefficients in R = K[X1, . . . , Xj ] and degree bounded by D. Suppose that we
also know that there is a solution to this system. Then by lemma 4, there is a solution with Xj degree
< O(MD). Thus by lemma 2 we can reduce to O(M2D) equations in over K[X1, . . . , Xj−1] with degree
at most D. Continuing this way, we get a linear system over K which has a solution, from which we
can reconstruct a solution to the original problem with degree at most (MD)O(2n) (note that the degree
was squaring at each stage).

Actually, to apply lemma 4 we required some goodness from our linear system at each stage. This
can be achieve by doing the following at every stage: we throw away all row dependencies to make the
matrix of full row rank. Then applying a random linear transformation to the X1, . . . Xn, we get that
with high probability for any single polynomial and any fixed variable, the modified polynomial will be
monic in that variable. This holds in particular for the determinant of a nonsingular r× r minor of our
A, thus making it good.

To see the high probability result, let us be a bit more precise. Given a polynomial f(x) homogenous
of degree n, not identically 0. Pick a random orthogonal matrix P (uniform from Sn−1, Sn−2, . . . , S0 )
and consider the polynomial g(x) = f(Px). Then the resulting polynomial is homogenous of degree n
and is not monic if and only if g(1, 0, . . . , 0) = 0. However P · (1, 0, . . . 0) is a point uniformly chosen
from the surface of the sphere and by Schwarz Zippel, f(P · (1, 0, . . . , 0)) is nonzero almost everywhere.
Thus w.h.p. g is monic.
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