Lecture 18

Lecturer: Madhu Sudan

Scribe: Alexey Spiridonov

1 Today

- We cover Gröbner basis recognition, generation, and the resulting algorithm for ideal membership.
- We won't produce any complexity estimates this lecture, but only a finite time decision procedure for testing membership in ideals.

2 Notation and Definitions

Some of these overlap with the previous lecture, but I repeat them here for the sake of completeness.
Ambient polynomial ring We'll take k to be an algebraically closed field, and take all our polynomials in $k\left[x_{1}, \ldots, x_{n}\right]$.

Monomial ordering A total ordering \geq on monomials $x^{\alpha}=x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$ satisfying

1. $x^{\alpha} \geq 1$ for al
2. $x^{\alpha} \geq x^{\beta} \Rightarrow x^{\alpha+\gamma} \geq x^{\beta+\gamma}$

For our purposes the lexicographic ordering will suffice (but there are many other useful ones). We compare x^{α} and x^{β} thus: if the first k indices agree: $\alpha_{i}=\beta_{i}, i \leq k$ and the k th differ, we decide based on that index $\alpha_{i} \leq \beta_{i} \Rightarrow \alpha \leq \beta$, and the reverse.

Leading monomial Denoted $L M(f)$, this is the greatest monomial of $f \in k\left[x_{1}, \ldots, x_{n}\right]$ according to our chosen ordering.

Leading coefficient The coefficient in front of $L M(f)$, denoted $L C(f)$.
Leading term $L T(f)=L C(f) L M(f)$.

3 Ideal Membership Problem

Given an ideal $J=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$ and a polynomial f_{0} in the ring, we would like to decide whether $f \in J$. The idea is simple: f_{0} is in J if and only if it can be written $\sum p_{i} f_{i}$. If we "divide" the latter by representation by f_{i} and take the remainder, we eliminate the term containing f_{i}; dividing out by all f_{i} we ought to get 0 , if and only if $f_{0} \in J$. However, generically, division is poorly defined: remainders depend on the order of the division, choice of basis. Ideally, we'd like to divide by the entire (infinite) ideal J; that's impractical, but last time we saw that dividing by a Gröbner basis is well-behaved.

So, here's an outline of our algorithm:

1. Fix a monomial ordering (say, lexicographic).
2. Find a Gröbner basis g_{1}, \ldots, g_{t} for J. (a priori, it's not clear that a finite one exists given our starting basis $f_{1}, \ldots f_{m}$). Dividing by this basis in order is a well-behaved operation.
3. Divide f_{0} by g_{1}, \ldots, g_{t}.
4. If the remainder is 0 then $f_{0} \in J$, else $f_{0} \in J$.

Figure 1: The two-variable case of Dickson's Lemma.

4 Gröbner Bases

Definition. A Gröbner basis $(G B)$ is a set of polynomials $g_{1}, \ldots, g_{t} \in k\left[x_{1}, \ldots, x_{n}\right]$ satisfying the following properties: (we give two version of property $1-1$ a from the previous lecture, and 1 b which we will show is equivalent)

1. $g_{1}, \ldots, g_{t} \in J$ (last time: generate J; we'll see these are equivalent)
(a) Old variant: g_{1}, \ldots, g_{t} generate J
(b) New variant: $g_{1}, \ldots, g_{t} \in J$
2. $I\left(L T\left(g_{1}\right), \ldots, L T\left(g_{t}\right)\right)=I(L T(J))$, where $L T(J)$ is the set of leading terms of J. (Note that it's also an ideal.)

So, we need a set of monomials generating the monomial ideal $I(L T(J))$. The set of generators $L T(J)$ is infinite, so we'd better make sure that we can actually produce a finite GB for this ideal. That's the subject of the next section.

In the process, we will also see that 1 b implies that g_{1}, \ldots, g_{t} generate J.

5 Hilbert Basis Theorem

Theorem (Hilbert Basis Theorem). Every ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ has a finite basis.
Remark. Though we assumed at the start of the lecture that k is a field, this theorem holds for k any Nötherian ring (ring in which every ideal is finitely generated).

The proof follows easily from the following lemma.
Lemma (Dickson's Lemma). Every monomial ideal J in $K\left[x_{1}, \ldots, x_{n}\right]$ has a finite basis.
Proof. We will work by induction on n, the number of variables.
The case $n=1$ is trivial. If our ideal is generated by $\left\{x^{i_{1}}, x^{i_{2}}, \ldots, x^{i_{n}}, \ldots\right\}$, it is also generated by $x^{i_{0}}$, with $i_{0}=\min \left\{i_{1}, \ldots, i_{n}\right\}$.

For two variables, $J=\left\{x^{i_{1}} y^{j_{1}}, x^{i_{2}} y^{j_{2}}, \ldots\right\}$, we can draw a picture; see Figure 1. It depicts all monomials on an integer grid (e.g. $x^{5} y^{2}$ is at $(5,2)$). Pick a monomial $x^{i} y^{j}$ from the generating set such that $i+j$ is minimal. Then, it generates all monomials in the dashed region in the figure. That leaves a vertical strip i wide and a horizontal strip j wide. There's room only for $i+j$ more generating monomials in those strips, so the ideal has at most $i+j+1$ generators.

In more variables, the bounds stop having a nice form and we can't draw pictures any more. So, we'll settle for arguing, in the same vein, that the generating set is finite.

Suppose that all $n-1$-variable ideals are finitely generated. Consider an n-variable ideal J. Now, take $x^{\alpha}=x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}} \in L T(J)$. For an index i and a degree β, define

$$
J_{(i, \beta)}=\left\{x_{1}^{\gamma_{1}} x_{2}^{\gamma_{2}} \ldots x_{i-1}^{\gamma_{i-1}} x_{i+1}^{\gamma_{i+1}} \ldots x_{n}^{\gamma_{n}} \text { such that } x_{1}^{\gamma_{1}} x_{2}^{\gamma_{2}} \ldots x_{i-1}^{\gamma_{i-1}} x_{i}^{\beta} x_{i+1}^{\gamma_{i+1}} \ldots x_{n}^{\gamma_{n}}\right\} .
$$

Now, $J_{(i, \beta)}$ is a set of monomials in $n-1$ variables, so the corresponding ideal is finitely generated. Let C be the union of all sets of generators of $J_{(i, \beta)}$ for $i=1 \ldots n, \beta=0 \ldots \alpha_{i}-1$. Then, we claim that $C \cup\{\alpha\}$ generates J. Indeed, take a monomial x^{δ} in J; if all $\delta_{i} \geq \alpha_{i}$, then x^{α} is a generator. Otherwise, there's some i such that $\delta_{i}<\alpha_{i}$, and in that case $x^{\delta} \in J_{i, \delta_{i}}$. That finishes the proof of the lemma.

That doesn't give any nice complexity bound on the size of the generating set. We will not show this, but the complexity of the resulting ideal membership algorithm is very bad (EXPSPACE).

Now, we use Dickson's lemma to prove Hilbert's Basis Theorem. Actually, we will prove more:
Theorem 5.1. Every polynomial ideal has a finite Gröbner basis.
Proof. The idea of the proof is: we will pick out some polynomials from the ideal J, such that $\left\{L T\left(g_{i}\right)\right\}$ generate $L T(J)$. This requires this lemma we promised we'd prove:

Lemma. In the definition of the Gröbner basis, $g_{1}, \ldots, g_{t} \in J \Rightarrow\left(g_{1}, \ldots, g_{t}\right)=J$ (assuming part 2 of the definition).

Proof. We will prove this by contradiction. Take g_{1}, \ldots, g_{t} as in the statement of the theorem.
Last lecture we proved the following helpful fact: if we have polynomials g_{1}, \ldots, g_{t} satisfying 1a and 2 , it follows we can canonically divide by these polynomials. As discussed before, this is an ideal membership test: if a polynomial f is in $I\left(g_{1}, \ldots, g_{t}\right)$, the division returns 0 , otherwise a nonzero remainder.

Suppose $\exists f \in J$ such that $f \notin I\left(g_{1}, \ldots, g_{t}\right)$. Let's compute the remainder after dividing f by g_{1}, \ldots, g_{t}; we get $f=r+\sum g_{i} q_{i}$. Moreover (again from last lecture), no monomial of r is divisible by $L T\left(g_{i}\right)$, for any i. Now, consider $L T(r)$; since $r \in J$, we get $L T(r) \in L T(J)$, so $L T(r)=$ $I\left(L T\left(g_{1}\right), \ldots, L T\left(g_{t}\right)\right)=L T(J)$, so there exists i such that $L T\left(g_{i}\right) \mid L T(r)$. Contradiction.
saw that 1b implies 1a.
Now, consider $L T(J)$; by the lemma, this is generated by a finite set $g_{1}^{\prime}, g_{2}^{\prime}, \ldots, g_{t}^{\prime}$. By definition of $L T(J)$, every g_{i}^{\prime} was obtained from J by taking the leading term of some $g_{i} \in J$. Look at the set g_{1}, \ldots, g_{t}; by the lemma, this Gröbner basis generates J, and so we are done.

Next, we
will see that a Gröbner basis is essentially unique. There are two obvious problems that get in the way of uniqueness. First, a GB plus arbitrary element is still a GB, so we need the following condition.

Definition. $\left(g_{1}, \ldots, g_{t}\right)$ is a minimal Gröbner basis for $J=I\left(g_{1}, \ldots, g_{t}\right)$ if for all i,

$$
L T\left(g_{i}\right) \notin I\left(L T\left(g_{1}\right), \ldots, L T\left(g_{i-1}\right), L T\left(g_{i+1}\right), \ldots, L T\left(g_{t}\right)\right) .
$$

So, in our quest for a unique GB, we will drop elements g_{i} such that

$$
L T\left(g_{i}\right) \in I\left(L T\left(g_{1}\right), \ldots, L T\left(g_{i-1}\right), L T\left(g_{i+1}\right), \ldots, L T\left(g_{t}\right)\right)
$$

one-by-one, until our GB becomes minimal.
Is the resulting basis unique? No. For instance, $\{x, y\}$ and $\{x, x+y\}$ are minimal bases for the same ideal. The second one obviously looks "worse" than the first. The following definition makes the meaning clear.
Definition. A minimal GB $\left(g_{1}, \ldots, g_{t}\right)$ is reduced if

$$
g_{i}=\operatorname{Rem}\left(g_{i} ; g_{1}, \ldots, g_{i-1}, g_{i+1}, \ldots, g_{t}\right)
$$

for all i.
We leave it as an exercise to show that if we have two minimal GB for $J:\left(g_{1}, \ldots, g_{t}\right)$ and $\left(g_{1}^{\prime}, \ldots, g_{t^{\prime}}^{\prime}\right)$, then

$$
\left\{L T\left(g_{1}\right), \ldots, L T\left(g_{t}\right)\right\}=\left\{L T\left(g_{1}^{\prime}\right), \ldots, L T\left(g_{t}^{\prime}\right)\right\}
$$

This implies that $t^{\prime}=t$. To make a reduced basis, we take a minimal basis, and for every g_{i} replace it by

$$
\operatorname{Rem}\left(g_{i} ; g_{1}, \ldots, g_{i-1}, g_{i+1}, \ldots, g_{t}\right)
$$

It's not difficult to check that this procedure does not alter the leading terms, and so the result is a Gröbner basis. It also follows that a reduced GB is unique; take two bases g_{i} and g_{i}^{\prime}, and arrange the indices so that leading terms are pairwise equal. Then, for some $j, g_{j} \neq g_{j}^{\prime} \Rightarrow g_{j}-g_{j}^{\prime} \in J$. But, the bases are reduced means that $L T\left(g_{i}\right) \nmid L T\left(g_{j}-g_{j}^{\prime}\right) \forall i$, and hence $L T\left(g_{j}-g_{j}^{\prime}\right) \notin I(L T(J))$, which contradicts g_{i} being a Gröbner basis.
Remark. The notion of a reduced GB is somewhat parallel to the notion of a strong generating set from earlier in the course.

6 Recognizing Gröbner Bases

The above proof is almost, but not quite constructive: we didn't specify how to construct a finite monomial basis (although that's not difficult), and it isn't immediately obvious how to get an inverse image in J of a given monomial.

However, we will get an actual algorithm for constructing a GB by answering the question: how do we recognize whether a given basis is a GB?

We'll start by making division by a Gröbner basis even more canonical: we already know that the remainder is unique, but we'd like to also regularize the quotients. To do this, we will consider $\operatorname{Rem}\left(f_{0} ; g_{1}, \ldots, g_{t}\right)$ with g_{1}, \ldots, g_{t} an ordered sequence. The procedure is: take the smallest i such that $L T\left(g_{i}\right)$ divides the largest (in our monomial ordering) monomial of f. That yields $f=f^{\prime}+m_{1} g_{1}$ with m_{1} a monomial. Then, we iterate, each time taking the smallest i so that $L T\left(g_{i}\right)$ divides the largest monomial of $f^{(j)}$. Once there is no such i, we are left with the usual remainder r, and m_{i} monomials such that:

$$
f=r+\sum m_{i} g_{i}
$$

However, the pieces of the quotient are special in that they are "reduced" $-m_{i} g_{i} \neq q_{j} g_{j}+\ldots$ with $j<i$ and "..." denoting a remainder with smaller leading monomials. This regularized division will be used in a proof shortly.

Next, we need a special polynomial called the syzygy of f and g. It's a special polynomial in $I(f, g)$ of the form:

$$
S(f, g)=f \cdot X-g \cdot Y
$$

with X and Y chosen so that the leading terms of the two pieces are equal. We can write it explicitly:

$$
S(f, g)=\frac{L C(g) L C M(L M(f), L M(g))}{L M(f)} \cdot f-\frac{L C(f) L C M(L M(f), L M(g))}{L M(g)} \cdot g .
$$

The key claim now is:

Proposition. The polynomials g_{1}, \ldots, g_{t} form a Gröbner basis iff $\forall i, j$,

$$
\operatorname{Rem}\left(S\left(g_{i}, g_{j}\right) ; g_{1}, \ldots, g_{t}\right)=0
$$

Once we prove the proposition, constructing a Gröbner basis is straightforward. Start with some basis g_{1}, \ldots, g_{t}; if there are i, j such that $\operatorname{Rem}\left(S\left(g_{i}, g_{j}\right) ; g_{1}, \ldots, g_{t}\right) \neq 0$, add this remainder to the basis. Any such remainder r has to be such that $L M(r)$ isn't generated by the $L M\left(g_{i}\right)$, so the monomial ideal $I\left(\left\{L M\left(g_{i}\right)\right\}\right)$ gets bigger with every step. But, we have seen that any monomial ideal is finitely generated, so this algorithm must terminate. Thus, proving the proposition will give us a finite-time decision procedure for finding a Gröbner basis, and by proxy, a finite-time ideal membership procedure.

The proof of the proposition follows from
Claim. If $\forall i, j, \operatorname{Rem}\left(S\left(g_{i}, g_{j}\right) ; g_{1}, \ldots, g_{t}\right)=0$, then $\left\{L M\left(g_{i}\right)\right\}$ generate $L M(J)$.
The proof of this claim was left to the next lecture.

