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Lecture 18
Lecturer: Madhu Sudan Scribe: Alexey Spiridonov

1 Today

• We cover Gröbner basis recognition, generation, and the resulting algorithm for ideal membership.

• We won’t produce any complexity estimates this lecture, but only a finite time decision procedure
for testing membership in ideals.

2 Notation and Definitions

Some of these overlap with the previous lecture, but I repeat them here for the sake of completeness.

Ambient polynomial ring We’ll take k to be an algebraically closed field, and take all our polynomials
in k[x1, . . . , xn].

Monomial ordering A total ordering ≥ on monomials xα = xα1
1 . . . xαn

n satisfying

1. xα ≥ 1 for al

2. xα ≥ xβ ⇒ xα+γ ≥ xβ+γ

For our purposes the lexicographic ordering will suffice (but there are many other useful ones). We
compare xα and xβ thus: if the first k indices agree: αi = βi, i ≤ k and the kth differ, we decide
based on that index αi ≤ βi ⇒ α ≤ β, and the reverse.

Leading monomial Denoted LM(f), this is the greatest monomial of f ∈ k[x1, . . . , xn] according to
our chosen ordering.

Leading coefficient The coefficient in front of LM(f), denoted LC(f).

Leading term LT (f) = LC(f)LM(f).

3 Ideal Membership Problem

Given an ideal J = (f1, f2, . . . , fm) and a polynomial f0 in the ring, we would like to decide whether
f ∈ J . The idea is simple: f0 is in J if and only if it can be written

∑
pifi. If we “divide” the latter

by representation by fi and take the remainder, we eliminate the term containing fi; dividing out by all
fi we ought to get 0, if and only if f0 ∈ J . However, generically, division is poorly defined: remainders
depend on the order of the division, choice of basis. Ideally, we’d like to divide by the entire (infinite)
ideal J ; that’s impractical, but last time we saw that dividing by a Gröbner basis is well-behaved.

So, here’s an outline of our algorithm:

1. Fix a monomial ordering (say, lexicographic).

2. Find a Gröbner basis g1, . . . , gt for J . (a priori, it’s not clear that a finite one exists given our
starting basis f1, . . . fm). Dividing by this basis in order is a well-behaved operation.

3. Divide f0 by g1, . . . , gt.

4. If the remainder is 0 then f0 ∈ J , else f0 ∈ J .

18-1



(i, j)
i more

j more

i

j

Figure 1: The two-variable case of Dickson’s Lemma.

4 Gröbner Bases

Definition. A Gröbner basis (GB) is a set of polynomials g1, . . . , gt ∈ k[x1, . . . , xn] satisfying the
following properties: (we give two version of property 1 – 1a from the previous lecture, and 1b which we
will show is equivalent)

1. g1, . . . , gt ∈ J (last time: generate J ; we’ll see these are equivalent)

(a) Old variant: g1, . . . , gt generate J

(b) New variant: g1, . . . , gt ∈ J

2. I(LT (g1), . . . , LT (gt)) = I(LT (J)), where LT (J) is the set of leading terms of J . (Note that it’s
also an ideal.)

So, we need a set of monomials generating the monomial ideal I(LT (J)). The set of generators LT (J)
is infinite, so we’d better make sure that we can actually produce a finite GB for this ideal. That’s the
subject of the next section.

In the process, we will also see that 1b implies that g1, . . . , gt generate J .

5 Hilbert Basis Theorem

Theorem (Hilbert Basis Theorem). Every ideal in k[x1, . . . , xn] has a finite basis.

Remark. Though we assumed at the start of the lecture that k is a field, this theorem holds for k any
Nötherian ring (ring in which every ideal is finitely generated).

The proof follows easily from the following lemma.

Lemma (Dickson’s Lemma). Every monomial ideal J in K[x1, . . . , xn] has a finite basis.

Proof. We will work by induction on n, the number of variables.
The case n = 1 is trivial. If our ideal is generated by {xi1 , xi2 , . . . , xin , . . . }, it is also generated by

xi0 , with i0 = min{i1, . . . , in}.
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For two variables, J = {xi1yj1 , xi2yj2 , . . . }, we can draw a picture; see Figure 1. It depicts all
monomials on an integer grid (e.g. x5y2 is at (5, 2)). Pick a monomial xiyj from the generating set
such that i + j is minimal. Then, it generates all monomials in the dashed region in the figure. That
leaves a vertical strip i wide and a horizontal strip j wide. There’s room only for i + j more generating
monomials in those strips, so the ideal has at most i + j + 1 generators.

In more variables, the bounds stop having a nice form and we can’t draw pictures any more. So,
we’ll settle for arguing, in the same vein, that the generating set is finite.

Suppose that all n − 1-variable ideals are finitely generated. Consider an n-variable ideal J . Now,
take xα = xα1

1 . . . xαn
n ∈ LT (J). For an index i and a degree β, define

J(i,β) = {xγ1
1 xγ2

2 . . . x
γi−1
i−1 x

γi+1
i+1 . . . xγn

n such that xγ1
1 xγ2

2 . . . x
γi−1
i−1 xβ

i x
γi+1
i+1 . . . xγn

n }.

Now, J(i,β) is a set of monomials in n− 1 variables, so the corresponding ideal is finitely generated. Let
C be the union of all sets of generators of J(i,β) for i = 1 . . . n, β = 0 . . . αi − 1. Then, we claim that
C ∪{α} generates J . Indeed, take a monomial xδ in J ; if all δi ≥ αi, then xα is a generator. Otherwise,
there’s some i such that δi < αi, and in that case xδ ∈ Ji,δi

. That finishes the proof of the lemma.

That doesn’t give any nice complexity bound on the size of the generating set. We will not show this,
but the complexity of the resulting ideal membership algorithm is very bad (EXPSPACE).

Now, we use Dickson’s lemma to prove Hilbert’s Basis Theorem. Actually, we will prove more:

Theorem 5.1. Every polynomial ideal has a finite Gröbner basis.

Proof. The idea of the proof is: we will pick out some polynomials from the ideal J , such that {LT (gi)}
generate LT (J). This requires this lemma we promised we’d prove:

Lemma. In the definition of the Gröbner basis, g1, . . . , gt ∈ J ⇒ (g1, . . . , gt) = J (assuming part 2 of
the definition).

Proof. We will prove this by contradiction. Take g1, . . . , gt as in the statement of the theorem.
Last lecture we proved the following helpful fact: if we have polynomials g1, . . . , gt satisfying 1a

and 2, it follows we can canonically divide by these polynomials. As discussed before, this is an ideal
membership test: if a polynomial f is in I(g1, . . . , gt), the division returns 0, otherwise a nonzero
remainder.

Suppose ∃f ∈ J such that f /∈ I(g1, . . . , gt). Let’s compute the remainder after dividing f by
g1, . . . , gt; we get f = r +

∑
giqi. Moreover (again from last lecture), no monomial of r is divisi-

ble by LT (gi), for any i. Now, consider LT (r); since r ∈ J , we get LT (r) ∈ LT (J), so LT (r) =
I(LT (g1), . . . , LT (gt)) = LT (J), so there exists i such that LT (gi)|LT (r). Contradiction. So, we

saw that 1b implies 1a.
Now, consider LT (J); by the lemma, this is generated by a finite set g′1, g

′
2, . . . , g

′
t. By definition

of LT (J), every g′i was obtained from J by taking the leading term of some gi ∈ J . Look at the set
g1, . . . , gt; by the lemma, this Gröbner basis generates J , and so we are done. Next, we

will see that a Gröbner basis is essentially unique. There are two obvious problems that get in the way
of uniqueness. First, a GB plus arbitrary element is still a GB, so we need the following condition.

Definition. (g1, . . . , gt) is a minimal Gröbner basis for J = I(g1, . . . , gt) if for all i,

LT (gi) /∈ I(LT (g1), . . . , LT (gi−1), LT (gi+1), . . . , LT (gt)).

So, in our quest for a unique GB, we will drop elements gi such that

LT (gi) ∈ I(LT (g1), . . . , LT (gi−1), LT (gi+1), . . . , LT (gt)),
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one-by-one, until our GB becomes minimal.
Is the resulting basis unique? No. For instance, {x, y} and {x, x + y} are minimal bases for the

same ideal. The second one obviously looks “worse” than the first. The following definition makes the
meaning clear.

Definition. A minimal GB (g1, . . . , gt) is reduced if

gi = Rem(gi; g1, . . . , gi−1, gi+1, . . . , gt)

for all i.

We leave it as an exercise to show that if we have two minimal GB for J : (g1, . . . , gt) and (g′1, . . . , g
′
t′),

then
{LT (g1), . . . , LT (gt)} = {LT (g′1), . . . , LT (g′t)}

This implies that t′ = t. To make a reduced basis, we take a minimal basis, and for every gi replace it
by

Rem(gi; g1, . . . , gi−1, gi+1, . . . , gt).

It’s not difficult to check that this procedure does not alter the leading terms, and so the result is a
Gröbner basis. It also follows that a reduced GB is unique; take two bases gi and g′i, and arrange the
indices so that leading terms are pairwise equal. Then, for some j, gj 6= g′j ⇒ gj−g′j ∈ J . But, the bases
are reduced means that LT (gi) 6 |LT (gj − g′j)∀i, and hence LT (gj − g′j) /∈ I(LT (J)), which contradicts
gi being a Gröbner basis.
Remark. The notion of a reduced GB is somewhat parallel to the notion of a strong generating set from
earlier in the course.

6 Recognizing Gröbner Bases

The above proof is almost, but not quite constructive: we didn’t specify how to construct a finite
monomial basis (although that’s not difficult), and it isn’t immediately obvious how to get an inverse
image in J of a given monomial.

However, we will get an actual algorithm for constructing a GB by answering the question: how do
we recognize whether a given basis is a GB?

We’ll start by making division by a Gröbner basis even more canonical: we already know that
the remainder is unique, but we’d like to also regularize the quotients. To do this, we will consider
Rem(f0; g1, . . . , gt) with g1, . . . , gt an ordered sequence. The procedure is: take the smallest i such that
LT (gi) divides the largest (in our monomial ordering) monomial of f . That yields f = f ′ + m1g1 with
m1 a monomial. Then, we iterate, each time taking the smallest i so that LT (gi) divides the largest
monomial of f (j). Once there is no such i, we are left with the usual remainder r, and mi monomials
such that:

f = r +
∑

migi.

However, the pieces of the quotient are special in that they are “reduced” – migi 6= qjgj + . . . with j < i
and “. . . ” denoting a remainder with smaller leading monomials. This regularized division will be used
in a proof shortly.

Next, we need a special polynomial called the syzygy of f and g. It’s a special polynomial in I(f, g)
of the form:

S(f, g) = f ·X − g · Y
with X and Y chosen so that the leading terms of the two pieces are equal. We can write it explicitly:

S(f, g) =
LC(g)LCM(LM(f), LM(g))

LM(f)
· f − LC(f)LCM(LM(f), LM(g))

LM(g)
· g.

The key claim now is:
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Proposition. The polynomials g1, . . . , gt form a Gröbner basis iff ∀i, j,

Rem(S(gi, gj); g1, . . . , gt) = 0.

Once we prove the proposition, constructing a Gröbner basis is straightforward. Start with some
basis g1, . . . , gt; if there are i, j such that Rem(S(gi, gj); g1, . . . , gt) 6= 0, add this remainder to the basis.
Any such remainder r has to be such that LM(r) isn’t generated by the LM(gi), so the monomial
ideal I({LM(gi)}) gets bigger with every step. But, we have seen that any monomial ideal is finitely
generated, so this algorithm must terminate. Thus, proving the proposition will give us a finite-time
decision procedure for finding a Gröbner basis, and by proxy, a finite-time ideal membership procedure.

The proof of the proposition follows from

Claim. If ∀i, j, Rem(S(gi, gj); g1, . . . , gt) = 0, then {LM(gi)} generate LM(J).

The proof of this claim was left to the next lecture.
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