
6.885 Algebra and Computation October 17, 2005

Lecture 10
Lecturer: Madhu Sudan Scribe: Ben Rossman

1 Clarification on Resultants

Consider polynomials f(x), g(x) ∈ R[x] where R is a unique factorization domain (with some notion of
order on its elements). In the last lecture, the resultant of f and g was defined as the “minimal” element
in the ideal I of R[x] generated by f and g, i.e., the polynomial with smallest leading coefficient among
all nonzero polynomials of lowest degree in I. While this notion of resultant serves our purposes, be
cautioned that this is not the standard definition.

Notice that f and g have no common factor if and only if there exist a(x), b(x) ∈ R[x] such that
deg a < deg g, deg b < deg f and a(x)f(x) + b(x)g(x) ∈ R − {0}. The problem of finding a and b such
that a(x)f(x) + b(x)g(x) = 1 can be represented as a linear system of deg f + deg g equations (for the
coefficients of f and g) in deg f + deg g unknowns (the coefficients of a and b). The determinant of the
matrix for this system is what is usually called the resultant. In particular, this is an element of R which
is zero if and only if f and g have a common factor.

2 Factoring in Fq[x, y]

We are given a polynomial f(x, y) ∈ Fq[x, y] that is assumed to be monic in x. (We later show how
to get rid of this assumption.) Our goal is to output a nontrivial factor of f if f is reducible, or else
to report that f is irreducible. Our algorithm consists of five steps. (In the following, where we write
“large enough” or “sufficiently large”, exactly how large will be specified when we do the analysis.)

Step 1 Check if f(x, y) and ∂f
∂x (x, y) are relatively prime (i.e. if f(x, y) is squarefree). If not, then

output gcd(f, ∂f
∂x) and stop. Otherwise, proceed to Step 2.

Step 2 For a large enough extension field K ⊇ Fq, find y0 ∈ K such that f(x, y0) and ∂f
∂x (x, y0) are

relatively prime.

Step 3 Find an extension field L ⊇ K, element α ∈ L and h(x) ∈ L[x] such that f(x, y) = (x−α)·h(x)
mod (y − y0).

Remark. Note that (x − α) and h(x) are relatively prime, since f(x, y0) is squarefree. Therefore, we
can apply Hensel’s Lifting Lemma.

Step 4 Apply Hensel iterations to obtain A(y) ∈ L[y] and H(x, y) ∈ L[x, y] such that

f(x, y) = (x−A(y))·H(x, y) mod (y − y0)t

where A(y0) = α and H(x, y0) = h(x) for some sufficiently large t (a power of two).

Step 5 If there exist nonzero polynomials g(x, y),H ′(x, y) ∈ L[x, y] such that

degx g < degx f

degy g ≤ degy f

g(x, y) = (x−A(y))·H ′(x, y) mod (y − y0)t,

then find any such g(x, y) and output gcd(f, g). Otherwise (if no such g exists), output “f is irreducible”.

10-1

Remark. If g(x, y) and H(x, y) exist, they can be found efficiently by solving a linear system over L.

2.1 Feasibility

We want to show that the algorithm outlined above is correct as well as feasible (i.e. has polynomial
runtime). We first establish feasibility. There are three parameters in the outline of the algorithm we
need to bound: the sizes of fields K and L, and the size of t.

We need K to be large enough so that there is guaranteed to exist y0 such that f(x, y0) and ∂f
∂x (x, y0)

have no root in common. We claim that it suffices to take ‖K‖ > 2d(d − 1) where d = degx f . To see
this, consider the discriminant ∆(y) of f with respect to x, defined as the resultant of f and ∂f

∂x in the
ring Fq[y][x]. As we have seen, ∆(y) is a polynomial in Fq[y] of degree ≤ 2d(d − 1). Therefore, since
‖K‖ > 2d(d − 1), there exists y0 ∈ K that is not a root of ∆(y). It follows that f(x, y0) and ∂f

∂x (x, y0)
have no common root.

What about the size of L? L is required to contain a root f(x, y0), which could be an irreducible
polynomial of degree d. So, the most we can say about L is that it is an extension field of degree at most
d over K. This is okay, however, since elements of L have polynomial-size representations (as d-tuples
over K), and each field operation over L reduces to polynomially-many field operations over Fq.

We now turn to t (i.e. two to the number of Hensel iterations). We set t equal to the least power
of two greater than 2d2. (We will need this assumption in order to prove correctness of the algorithm.)
Thus, our algorithm involves only 2 log2(d)+2 Hensel liftings. Since each Hensel lifting requires poly(d)
operations over L (as we saw in the previous lecture), the overall running time is polynomial in d and q.

Remark. The algorithm presented here is not optimized for efficiency. More sophisticated algorithms
are known that achieve better running times.

2.2 Correctness

Let f1(x, y), ..., fk(x, y) be the irreducible factors of f(x, y), all monic in x. When we substitute y0 for
y, the resulting polynomials fi(x, y0) are no longer necessarily irreducible. However, because f(x, y0) is
squarefree (by our choice of y0), we know that (x−α) divides exactly one of the fi(x, y0), say f1(x, y0),
without loss of generality. The following two claims now establish the correctness of the algorithm.

Claim 1 If k > 1 then f1(x, y) is a candidate for g(x, y) in Step 5.

Proof There exists h1(x) ∈ L[x] such that

f1(x, y) = (x− α)h1(x) mod (y − y0).

(x − α) and h1(x) are relatively prime, since f(x, y0) is squarefree. So we can apply Hensel liftings to
get polynomials A1(y) and H1(x, y) such that A1(y0) = α, H1(x, y0) = h1(x) and

f1(x, y) = (x−A1(y))H1(x, y) mod (y − y0)t.

Setting H̃(x, y) = H1(x, y)·(f2(x, y) · · · fk(x, y)
)
, we have

f(x, y) = (x−A1(y))H̃(x, y) mod (y − y0)t.

From the uniqueness of monic Hensel liftings, it follows that A1(y) = A(y) mod (y − y0)t. Since k > 1,
we have degx(f1) < degx(f). f1(x, y) is thus a suitable candidate for g(x, y) in Step 5.

Claim 2 f1(x, y) divides every candidate g(x, y) in Step 5.

10-2

Proof Toward a contradiction, assume f1 does not divide g. Since f1 is irreducible, f1 and g have
no common factor. Therefore, by the results of the last lecture, the resultant R(y) = Resx(f1, g) is a
polynomial of positive degree ≤ 2d2. Write R(y) as a(x, y)f1(x, y) + b(x, y)g(x, y) for some polynomials
a(x, y) and b(x, y). We have

R(y) = a(x, y)(x−A(y))H1(x, y) + b(x, y)(x−A(y))H ′(x, y) mod (y − y0)t

= (x−A(y))·(a(x, y)H1(x, y) + b(x, y)H ′(x, y)) mod (y − y0)t.

By our choice of t > degy(R), we ensure that R(y) 6= 0 mod (y − y0)t. Therefore,

a(x, y)H1(x, y) + b(x, y)H ′(x, y) 6= 0 mod (y − y0)t.

It follows that (x − A(y))·(a(x, y)H1(x, y) + b(x, y)H ′(x, y)) has nonzero degree in x. However, this
contradicts that degx(R) = 0, i.e., R is a polynomial in y alone.

2.3 Factoring non-monic f(x, y)

In our description of the algorithm, we assume that input polynomial f(x, y) is monic in x. We now
show how to eliminate this assumption. Suppose f(x, y) is not monic in x, and rewrite it as

f(x, y) = g(y)xd +O(xd−1).

Define a new polynomial f̃(z, y) by

f̃(z, y) = g(y)d−1·f(z
g(y) , y).

f̃(z, y) is clearly monic in z, so we apply our algorithm to factor f̃(z, y) = h̃(z, y)˜̀(z, y). We now have

f(x, y) = 1
g(y)d−1 h̃(g(y)x, y)˜̀(g(y)x, y).

3 A few words on multivariate factoring

Our algorithm for factoring in Fq[x, y] generalizes to rings R[x, y] where R is any ring over which we
have an efficient univariate factorization algorithm. This immediately suggests an approach to factoring
multivariate polynomials in Fq[x1, ..., xc], since c-variate factorization over Fq is the same as univariate
factorization over Fq[x1, ..., xc−1]. Unfortunately, the algorithm implies by this approach has the abysmal

running time of poly(d)22

...
2 }

height c

.
There is another, more efficient generalization of our algorithm. We outline the trivariant case.

Suppose we are given input polynomial f(x, y, z) ∈ Fq[x, y, z] that is monic in x. After checking that f

and ∂f
∂x) have no common factor,find a pair of values y0 and z0 (in a suitable extension field of Fq) such

that f(x, y0, z0) and ∂f
∂x)(x, y0, z0) have no common factor. Next find a nice factorization of f modulo

the ideal generated by (y−y0) and (z−z0) in the ring L[x, y, z] for another extension field L of Fq. Now
apply Hensel liftings (Step 4) and look for a polynomial g with the right profile (Step 5). This method
results in an efficient running time poly(dc) where d = deg(f) and c is the number of variables.

One might be tempted ask: is there a multivariate factorization algorithm with running time polyno-
mial in c? The question is absurd if we continue to represent polynomials explicitly (i.e. by enumerating
their coefficients), since a polynomial in c variables of degree d has O(dc) coefficients in general. In order
to make the question meaningful, we have to consider other ways of representing polynomials.

10-3

Kaltofen and Trager devised a clever algorithm for finding the factors of a polynomial f(x1, ..., xc)
that is given as black box (together with essential information like the degree of f). The output of the
algorithm is, of course, not an explicit polynomial, but a procedure (involving calls to the original black-
box function) for computing the values of some irreducible factor of f . The Kaltofen-Trager algorithm
achieves poly(d, c) running time. (The bivariate factorization in the previous section is also due to
Kaltofen. Other bivariate factorization algorithms are due to Lenstra and Grigoriev.)

4 Factoring in Z[x]

As out final topic today, we begin outlining an algorithm for factoring integer polynomials. Let f ∈ Z[x]
be a monic polynomial of degree d whose coefficients are between −2n and 2n. The representation of f
is thus a bit-string of length O(dn). The procedure for factoring f uses many of the same ideas as the
bivariate factorization algorithm. The five steps below are adapted from the corresponding steps in the
bivariate algorithm.

Step 1 Check for common factors of f and ∂f
∂x . If gcd(f, ∂f

∂x) is nontrivial, then we report it and stop.
Otherwise, we continue to Step 2.

Step 2 Find prime p ∈ Z such that f and ∂f
∂x have no common factors modulo p. (We use resultants

and the Chinese Remainder Theorem to prove small p exists.)

Step 3 Factor f(x) modulo p as f(x) = g(x)h(x) mod p where g, h are relatively prime and g is
irreducible.

Step 4 Apply Hensel liftings to obtain G(x) and H(x) such that

G(x) = g(x) mod p

H(x) = h(x) mod p

f(x) = G(x)H(x) mod pt.

Here we have the added burden of proving that the coefficients of G and H cannot be too large; ±2n2

is a rough bound.

Step 5 Find g̃(x) such that g̃(x) = G(x)H ′(x) mod pt, deg(g̃) < d and all coefficients of g̃ have size
≤ 2n2

. (Note that g̃(x) satisfying the first two conditions can be found by solving a linear system. The
third condition, i.e. bounding the size of coefficients, is what makes the problem difficult.)

Exercise Prove analogues of Claims 1 and 2 in this setting.

10-4

