
6.885 Algebra and Computation October 3, 2005

Lecture 7

Lecturer: Madhu Sudan Scribe: Jingbin Yin

Today we are going to continue our talk about factorization of polynomials over finite fields.

And then we will give a completely different deterministic algorithm to factorize polynomials

over fields of small character.

1 Factorization of polynomials over finite field Fq

1.1 Inspiration

In Lecture 5, we came up with a algorithm to find all linear factors of f(x) ∈ Fq[x], where q is odd:

LINEAR-FACTOR-FIND(f(x) =
∑

cix
i):

1. f(x)← gcd(xq − x, f(x)).

2. If deg(f) = 0, return Non. If deg(f) = 1, return f(x).

3. Pick c ∈ Z∗

q , d ∈ Zq at random.

4. f̃(x)← f(x−d
c

).

5. If h̃(x) = gcd(f̃(x), x
q−1

2 − 1) is non-trivial,

return LINEAR-FACTOR-FIND(h(x) = h̃(cx + d)), LINEAR-FACTOR-FIND(f(x)
h(x)).

Else, try again from stage 3.

The efficiency of this algorithm based on three facts:

1. Every linear polynomial divides xq − x.

2. We have a nice factorization of xq − x = x(x
q−1

2 − 1)(x
q−1

2 + 1).1

3. We have a efficient technique to randomize the factors of f(x).

When we try to apply similar algorithm to find all factors of higher degree, it seems like impossible
to randomize all the factors, since they may have different degrees. However, we could change the
algorithm LINEAR-FACTOR-FIND a little bit, so that it may look like easier to generalize:

LINEAR-FACTOR-FIND-1(f(x) =
∑

cix
i):

1. f(x)← gcd(xq − x, f(x)).

2. If deg(f) = 0, return Non. If deg(f) = 1, return f(x).

3. Pick c ∈ Z∗

q , d ∈ Zq at random.

4. h(x) = gcd(f(x), (cx + d)
q−1

2 − 1).

1 This factorization is really nice because the degrees of the factors (except x) are all the same.

7-1

5. If 0 < deg(h) < deg(f),

return LINEAR-FACTOR-FIND-1(h(x)), LINEAR-FACTOR-FIND-1(f(x)
h(x)).

Else, try again from stage 3.

Then inspired by this algorithm, if we can apply similar algorithm to find all factors of higher degree
in Fq[x], we have to deal with these three facts:

1. Every irreducible polynomial of degree d in Fq[x] divides xqd

− x.

2. There is a nice factorization of xqd

− x = p1(x)p2(x) in Fq[x], i.e. deg(p1) ≈ deg(p2).

3. We can pick g(x) ∈ Fq[x] at random satisfying certain constraints, s.t. it is a good random-
ization.

If we have these three facts, we can try to find all irreducible factors of degree d of f(x) by an
algorithm similar to LINEAR-FACTOR-FIND-1.

Fact 1 is already proved in Lecture 6. We just focus on Fact 2 and 3 in the following.

1.2 Algorithm when q is odd

When q is odd, i.e. q = pk, p is a odd prime, k ∈ Z and k > 0, we have xqd

− x = x(x
qd

−1

2 −

1)(x
qd

−1

2 + 1), which is a very nice factorization. Then we solved Fact 2. The only thing we have to
do is to conduct Fact 3.

Suppose f(x) = f1(x)f2(x) · · · fl(x), where f1(x), f2(x), · · · , fl(x) are distinct irreducible polynomi-
als of degree d, l > 1. What we need to do is to pick at random g ∈ Fq[x] satisfying some constraints,

then try h(x) = gcd(f(x), g(x)
qd

−1

2 − 1), s.t. the probability of 0 < deg(h) < deg(f) is as high as
possible.

Consider Fq[x]/(f) = Fq[x]/(f1) ⊗ Fq[x]/(f2) ⊗ · · · ⊗ Fq[x]/(fl), where Fq[x]/(f) is a ring and

Fq[x]/(fi), 1 ≤ i ≤ l, are fields. Let gi ≡ g (mod fi), 1 ≤ i ≤ l. The probability of g
qd

−1

2

i − 1 = 0(or

g
qd

−1

2

i − 1 6= 0)2 in Fq[x]/(fi) is roughly 1
2 , i.e. the probability of fi|h (or fi ∤ h) is roughly 1

2 . Thus
if we can choose at random g1 ∈ Fq[x]/(f1) and g2 ∈ Fq[x]/(f2) independently, the probability of
0 < deg(h) < deg(f) is roughly 1 − 2(1

2)2 = 1
2 (big enough). (Since deg(h) = 0 only if f1 ∤ h and

f2 ∤ h, and deg(h) = deg(f) only if f1|h and f2|h.) By Chinese Remainder Theorem, to choose at
random g1 ∈ Fq[x]/(f1) and g2 ∈ Fq[x]/(f2) independently is equal to choose g′ ∈ Fq[x]/(f1f2) at
random. Thus we can complete Fact 3 as:

Pick g ∈ Fq[x] at random of deg(g) ≤ 2d− 1.

By the three facts we completed, we can construct an algorithm to find all irreducible factors of
degree d of f(x) ∈ Fq[x], if f(x) is a product of irreducible polynomials of degree d:

2 α ∈ F∗

Q
is called a quadratic residue if ∃β ∈ FQ, s.t. α = β2; α ∈ F∗

Q
is called a quadratic non-residue

if ∄β ∈ FQ, s.t. α = β2. Then α is a quadratic residue iff α
Q−1

2 − 1 = 0, and α is a quadratic non-residue iff

α
Q−1

2 − 1 6= 0.

7-2

d-SPLIT(f(x), where f(x) is a product of irreducible polynomials of degree d):

1. If deg(f) = 0, return Non. If deg(f) = d, return f(x).

2. Pick g ∈ Fq[x] at random of deg(g) ≤ 2d− 1.

3. h(x) = gcd(f(x), g(x)
qd

−1

2 − 1).

4. If 0 < deg(h) < deg(f),

return d-SPLIT(h(x)), d-SPLIT(f(x)
h(x)).

Else, try again from stage 2.

Finally from d = 1 to d = deg(f), we can construct an algorithm to find all factors of f(x) ∈ Fq[x]:

FACTORIZE-ANY-POLY(f(x) ∈ Fq[x]):

1. If deg(f) = 0 or 1, return f(x).

2. Repeat the following for d = 1 to deg(f).

3. Compute fd(x) = gcd(f(x), xqd

− x). (fd is the product of all distinct irreducible factors of
degree d of f(x).)

4. Find all irreducible factors h1, h2, · · · , hk of fd by d-SPLIT(fd).

5. By removing all multiples of hi in f , find αi ∈ Z, αi > 0, s.t. hαi

i |f and hαi+1
i ∤ f , 1 ≤ i ≤ k.

6. return hα1

1 , hα2

2 , · · · , hαk

k .

1.3 Algorithm when q = 2t

Now, the only problem we left after discussing in 1.2 is the condition when Fq is of the form F2t ,
where t ∈ Z, t ≥ 1. First of all, we complete Fact 2 and 3.

For Fact 2, Let p(x) = Πi∈Fq
(T (x) − i), where T (x) is the trace of Fqd to Fq, i.e. T (x) =

x + xq + xq2

+ · · ·+ xqd−1

. Since ∀α ∈ Fqd , T (α) ∈ Fq, then we have p(α) = 0 for all α ∈ Fqd . Thus

p(x) is a polynomial of degree qd which vanishes on Fqd , and hence must equal to xqd

− x, the other

polynomial of degree qd that vanishes on Fqd . We conclude that xqd

− x = p(x) = Πi∈Fq
(T (x) − i)

in Fqd [x], and hence in Fq[x]. Then we can depart Fq to two parts A and B, s.t. |A| = |B|. Then

let p1(x) = Πi∈A(T (x) − i), p2(x) = Πi∈B(T (x) − i), we have xqd

− x = p1(x)p2(x) in Fq[x] and
deg(p1) = deg(p2). We complete Fact 2.

By similar discussing as in 1.2, we also can complete Fact 3 as:

Pick g ∈ Fq[x] at random of deg(g) ≤ 2d− 1.

Thus there is a similar algorithm as in 1.2, just replacing g(x)
qd

−1

2 − 1) by p1(g(x)).

The algorithm’s run time is a polynomial of deg(f) and log q. That saved a lot of time when q is
very large.

7-3

2 A deterministic algorithm

In this section, we want to talk about Berlekump’s deterministic algorithm to factorize f(x) over
field Fq in time poly(deg(f), t, p), where q = pt.

The essence of this algorithm is that:

CLAIM: 1. Given f(x) ∈ Fq[x] reducible, where q = pt, there exists a polynomial g ∈ Fq[x] s.t.
f(x)|g(x)p − g(x) and 0 < deg(g) < deg(f).
2. g(x) can be found efficiently.

First of all, we discuss g(x) for a moment to show why this claim is useful. Since g(x)p − g(x) =
Πα∈Fp

(g(x)− α), if we have f(x)|g(x)p − g(x), we can try gcd(f(x), g(x)− α), ∀α ∈ Fp, there must
be at least one of these a non-trivial factor of f(x). By doing so repeatedly, we can factorize f(x)
completely.

Now, we have to prove the claim.

PROOF 1. Consider f(x) = f1(x)f2(x), where gcd(f1, f2) = 1 and deg(f1), deg(f2) > 0. Then
f(x)|g(x)p − g(x) iff f1(x)|g(x)p − g(x) and f2(x)|g(x)p − g(x). By Chinese Remainder Theorem,
there exists a polynomial g(x) ∈ Fq[x]/(f) s.t. g(x) ≡ α1(modf1), g(x) ≡ α2(modf2), where α1 6= α2

and α1, α2 ∈ Fp. Thus g(x) satisfies that f(x)|g(x)p − g(x) and 0 < deg(g) < deg(f).

2. (We just give a introduction to this part. The whole proof will be given on the next lecture.)
Suppose g(x), h(x) both satisfy our needs. Then g(x)p − g(x) ≡ h(x)p − h(x) ≡ 0(modf). We have:

1. (g(x) + h(x))p − (g(x) + h(x)) ≡ 0(modf).

2. (αg(x))p − (αg(x)) ≡ 0(modf), ∀α ∈ Fp.

Thus, all the polynomial satisfying our needs form a vector space over Fp.

Since we also can view Fq as a vector space over Fp, let g(x) =
∑deg(f)−1

i=0 cix
i, where ci ∈ Fq =

Ft
p, ci = (ci1, ci2, · · · , cit). g(x) is given by a vector of t deg(f) elements: {cij : 1 ≤ i ≤ deg(f), 1 ≤

j ≤ t} in Fp.
Then what we have to do is to find some linear constraints s.t. g(x) satisfies our needs.
(To be continue.)

7-4

