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Lecture 6
Lecturer: Madhu Sudan Scribe: Arnab Bhattacharyya

In the last lecture, we saw an algorithm to find roots of a polynomial in a finite field. In particular,
we noticed that if a polynomial f(x) ∈ Fq[x] has any roots, then gcd(f(x), xq − x) is not 1. This is true
because

∏
α∈Fq

(x−α) = xq −x and, so, a nontrivial common divisor between xq −x and f(x) indicates
that f(x) has linear factors. We can use this gcd test to determine irreducibility of a cubic polynomial,
since a cubic factors iff one of its factors is linear. But, in general, if f(x) ∈ Fq[x] is a monic, degree d
polynomial, how do we determine if it is irreducible? We will answer this question in today’s lecture.

1 Some Properties of Finite Fields

1.1 Order of a finite field

Let F be a finite field. Then, we claim that |F | = pt for some prime p and some positive integer t. Let
us see why this is true.

First of all, define the characteristic of a ring R to be the smallest integer n such that for all α ∈ R,
n · α = 0 (if such an n exists). For a field F , the characteristic is equivalently1 the smallest integer n
such that n ·1 = 0. Now suppose n is not prime. Let n = pq with p ≤ q < n. Then, p ·1 6= 0 and q ·1 6= 0
but (p · 1)(q · 1) = (pq) · 1 = 0, contradicting the fact that F is an integral domain. So, the characteristic
of F is always a prime.

From the above, it easily follows that Zp ⊆ F ; in other words, F is an extension field of Zp. We have
the following fact about extensions of finite fields:

Claim 1 Let K and L be finite fields with K ⊆ L. Then, L can be viewed as a finite-dimensional vector
space over K.

Proof Idea Addition in the K-vector space is the addition law in L and scalar multiplication of an
element α in L by an element c of K is defined to be the product cα as multiplied in L. Since L is finite,
L must be finite dimensional over K.

So, there must exist a finite set of bases elements b1, . . . , bt in L such that L = {∑i αibi|αi ∈ K}
and, furthermore, if there exists α1, . . . , αt such that

∑
i αibi = 0, then α1 = · · · = αt = 0. Thus, if F is

a t-dimensional vector space over Zp, |F | = pt because there are p choices for each of the t αi’s. This is
what we wanted to show.

1.2 Extension fields and subfields

The following constrains the number of subfields of a field:

Claim 2 Let K, F, L be fields such that K ⊆ F ⊆ L, then the dimension of F over K must divide the
dimension of L over K.

Proof Idea Suppose {αi} is a set of bases elements of F over K and {βj} a set of bases elements of
L over F . Then, {αiβj} is a set of bases elements of L over K.

Let L be a t-dimensional vector space over K. Then, if |K| = q, |L| = qt. The following claims that
there is no other subfield of L isomorphic to K.

Claim 3 If K ⊆ L, then
1Let m be the smallest integer such that m · 1 = 0. Then, since n · 1 = 0, n ≥ m. Conversely, for any α ∈ F ,

m · α = (m · 1)α = 0 and, so, m ≥ n. Therefore, n = m.
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• there exists a unique isomorph of K in L

• given α ∈ L, one can tell if α is in K or not

Proof Idea Every α ∈ K satisfies αq = α, and at most q elements in L satisfy this equation. So,
there cannot be another subfield of L of order q, and α ∈ K if and only if αq = α.

The next question that we want to address is whether there are efficient ways to go from the larger
field, L, to the smaller field, K. In general, we don’t know any good way of enumerating all the elements
of K other than by checking each element of L to see if it is a fixed point of the map x → xq. But there
are efficient maps from L to K:

1. Trace: Let TrK : L → L be the map defined by

TrK(x) = x + xq + xq2
+ · · ·+ xqt−1

Claim 4 Then,

• For all α ∈ L, TrK(α) ∈ K

• For all a, b ∈ K and α, β ∈ L, TrK(aα + bβ) = a · TrK(α) + b · TrK(β)

Proof Let us prove the second part first. First of all, note that for any x and y in L and for any
positive integer i, (x + y)qi

= xqi

+ yqi

; this fact is used very frequently in finite field calculations.
So,

TrK(aα + bβ) =
t−1∑

i=0

(aα + bβ)qi

=
t−1∑

i=0

aqi

αqi

+
t−1∑

i=0

bqi

βqi

=
t−1∑

i=0

aαqi

+
t−1∑

i=0

bβqi

= a · TrK(α) + b · TrK(β)

To see that TrK(α) ∈ K for all α ∈ L, note that

(TrK(α))q = αq + αq2
+ · · ·+ αqt

= αq + αq2
+ · · ·+ αqt−1

+ α

= TrK(α)

2. Norm: Let NK : L → L be the map defined by

NK(x) = x1+q+q2+···+qt−1

Claim 5 Then,

• For all x, y ∈ L, NK(x · y) = NK(x) ·NK(y)
• NK(0) = 0 and NK maps L∗ to K∗

Proof Idea Similar to above proof of the properties of trace.
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2 Representing Extension Fields

Suppose we have a way to represent elements of field K, and we would to like to represent elements of
an extension field L ⊇ K. We will describe three representations, the last of which, using irreducible
polynomials, is the most standard one.

2.1 (Partial) Representation 1

We argued above that L, a field of order qt, is isomorphic to a t-dimensional (additive) vector space over
K, a field of order q. So, one way to represent an element α ∈ L is as a vector Vα ∈ Kt. This is suitable
for addition because Vα+β = Vα + Vβ , but it is not suitable for multiplication.

2.2 Representation 2

Let us modify the above representation in order to encode the field multiplication table. For each α ∈ L,
consider the linear map Aα : Kt → Kt defined to be Aα(Vβ) = Vαβ . Also, note that Aα(Vβ + Vγ) =
AαVβ + AαVγ , satisfying the distributive law. Each Aα can be encoded by a t-by-t matrix over K.
Hence, this representation is suitable for doing addition and multiplication over L. However, it is often
the case that we cannot afford the O(t2) elements required to represent each element in L.

2.3 Representation 3

We will show that for all positive integers t, there exists a polynomial g(x) ∈ K[x] of degree t that is
monic and irreducible. Furthermore, L ∼= K[x]/(g(x)). Thus, an element of L can be represented as a
polynomial in K[x] of degree less than t.

Claim 6 Given a field K of order q and any positive integer t, there exists a field L ⊇ K of order qt.

Proof Idea Consider the polynomial f(x) = xqt − x. Let F be the extension field of K over which
this polynomial splits completely into linear factors. We can always find F by repeatedly adjoining roots
to K. Now, we will show that L = {α ∈ F |αqt − α = 0} is the desired field of order qt.

First of all, since f ′(x) = −1 and, so, gcd(f, f ′) = 1, f(x) has no repeated roots. Combining this
with the fact that f(x) has at most qt roots leads us to |L| = qt.

Next, we need to see that L is a field. This is pretty straightforward. If α, β ∈ L, then clearly αβ
and α−1 are in L; also, α + β ∈ L because (α + β)qt

= αqt

+ βqt

and −α ∈ L because (−1)qt

= −1 for
odd q and −1 = 1 for a field of characteristic 2.

It is also true that any two fields of the same order are isomorphic, although we shall not prove this
claim here. (Therefore, in many places, we will say “a field” where “the field” is also true.)

Next, we define the concept of a minimal polynomial gα(x) ∈ K[x] for an α ∈ L. If α ∈ K, then its
minimal polynomial is gα(x) = x−α. Otherwise, if α ∈ L−K, consider the smallest set {1, α, α2, . . . , αd}
such that there exists c0, . . . , cd ∈ K with

∑d
i=0 ciα

i = 0 and cd = 1. Then call gα(x) =
∑d

i=0 cix
i ∈ K[x]

the minimal polynomial for α. Note that d ≤ t because there can be at most t linearly independent
elements in L regarded as a K-vector space.

Claim 7 For any α ∈ L, gα(x) is an irreducible polynomial over K.

Proof Suppose gα(x) is not irreducible; that is, gα(x) = h1(x)h2(x) for some h1, h2 ∈ K[x] and
deg(h1) ≤ deg(h2) < deg(gα). Then, since gα(α) = 0 and K[x] is an integral domain, h1(α) = 0 or
h2(α) = 0. But this is a contradiction to the minimality of d = deg(gα).

Next, we show that there do exist irreducible polynomials of degree d for all positive integers d ≤ t.
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Claim 8 For any field K, there exist at least qd−1
d − qd/2 irreducible polynomials in K[x] of degree d.

Proof Consider a field L of order qd as guaranteed by Claim 6. Then, we can construct minimal
polynomials from each nonzero α ∈ L. Some of these polynomials may be the same, but since a
polynomial of degree d has at most d roots, each polynomial can repeat at most d times. Hence there
are at least qd−1

d irreducible polynomials of degree less than or equal to d. Next, note that the degree of
each irreducible polynomial must divide d. This is so, because if an irreducible polynomial g has degree
r, then K[x]/(g(x)) has dimension r over K and hence, by Claim 2, r must divide d, the dimension of
L over K. Therefore, the next highest degree of an irreducible polynomial after d is d/2 and there are
a total of qd/2 polynomials of degree d/2. So, the number of irreducible polynomials of degree strictly d

is at least qd−1
d − qd/2.

The above claim should cover most combinations of q and d; for those not covered, the requisite
irreducibles are listed in some book! Note that this claim is analogous to the version of the prime-number
theorem which states that the probability that an integer of n or less bits is prime is approximately 1/n.

So, we have shown that given an extension field L of dimension t over K, it is always possible to find
an irreducible polynomial g(x) ∈ K[x] of degree t. Also, it is clear that K[x]/(g(x)) is a field of order
qt since g(x) is irreducible. By the isomorphism theorem mentioned above, L ∼= K[x]/(g(x)). Thus, we
can always represent a field element of L as a polynomial in K[x] modulo an irreducible g(x).

3 Testing Irreducibility

Given a g(x) ∈ K[x] that is monic and of degree d, how do we efficiently decide if it is irreducible? We
have now acquired the tools necessary to give the algorithm.

Claim 9 If g(x) ∈ K[x] is irreducible of degree d, then g(x) | xqd − x.

Proof Let L = K[x]/(g(x)). (Note this is one of those places where introducing an extension field is
useful even if there was no mention of one in the original problem.) Then, if α ∈ L, α|L| = αqd

= α.
Representing α as a polynomial p(x) in K[x]/(g(x)), we have that p(x)qd

= p(x) (mod g(x)). Letting
p(x) = x, we have what we wanted.

Claim 10 If g(x) is irreducible of degree d, then for all d′ < d, g(x) - xqd′ − x.

Proof Suppose g(x) | xqd′ − x for some d′ < d. Then, consider a splitting field L of xqd′ − x;
|L| = qd′ . So, g must have a root α in L. Let hα be the minimal polynomial in K[x] for α ∈ L. Note
that deg(hα) ≤ d′ < d = deg(g); so, hα 6= g. Now, because x − α divides both hα and g, gcd(hα, g) is
nontrivial. Also, the gcd is a polynomial in K[x], a contradiction of the fact that g and hα are irreducible
polynomials.

Thus, we get the following algorithm for testing irreducibility:

• d′ ← d− 1

• Decrement d′ until d′ = 1

– If gcd(g(x), xqd′ − x) 6= 1, output reducible

• If g(x) | (xqd − x), output irreducible. Else, output reducible.

If g(x) is irreducible, then by the above two claims, the algorithms outputs irreducible. If g(x) is
reducible, say g(x) = h0(x)h1(x) where h0 is irreducible of degree d0 < d. Then, by Claim 9, h0(x)
divides xqd0 − x and, so, gcd(g(x), xqd0 − x) 6= 1 and the algorithm returns reducible.
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