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Lecture 4

Lecturer: Madhu Sudan Scribe: Karola Mészáros

Membership algorithm for the permutation group

In the last lecture we only sketched the proof of Gauss’s lemma.

Exercise 1. Prove Gauss’s lemma rigorously.

The problem we are considering today is as follows: given a group G, subgroup of the symmetric
group Sn, and an element π ∈ Sn, we would like to know whether π belongs to G. In order to ask
this question we must have a way to represent the group G, and the most natural way to do so is by
giving a set S = {π1, . . . , πl} such that πi ∈ Sn for all i ∈ [l], and G =< S >, generated by the set S.
Moreover, we represent every permutation π by specifying the image of any k ∈ [n] under π (given such
a representation we can also easily verify if it is really a permutation). Back to our original question of
whether π is in G, one way to show that π is in G is to write π as a product of elements in S. However,
as it turns out this is not a very efficient way, since:

Exercise 2. Given G ⊂ Sn, generated by less than or equal to n elements, there is a permutation
π ∈ G such that the shortest product of its generators representing π is exponential in n.

Exercise 3. Express the towers of Hanoi as a permutation group problem.

Since we saw that if G is given by just any set of generators S it won’t be efficient to look for a
representation of elements as product of the given generators, we will shortly introduce the notion of a
strong generating set of G. The idea is that we would like to have a (relatively) short representation for
any π, and by adding some special elements to our set of generators we might be able to do this (start
with the empty set and successively add suitable generators).

Definition. T ⊂ G is a strong generating set (SGS) of G if for every j < k ≤ n we have the following:
if there exists a τ ∈ G such that τ(k + 1) = k + 1, . . . , τ(n) = n, τ(j) = k, then there exists a σ = σjk in
T such that σ(k + 1) = k + 1, . . . , σ(n) = n, σ(j) = k.

Lemma. (a) Every group G has a SGS T with cardinality O(n2).
(b) < T >= G.

Proof. (a) It is clear that any group G has a SGS since G itself is a SGS. Moreover, we see from the
definition of SGS that for every j, k, j 6= k there is at most one generator in T . This, |T | is less than or
equal to n choose 2.

(b) To prove this we introduce the following concept.
For T ⊂ G define T̄ as the elements obtained by greedy (right-to-left) movements using elements of

T . See the illustration:

fixed part of the permutation 
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Definition. For every permutation σ ∈ Sn, let k(σ) be the largest k such that σ(k) 6= k. Then, for
a SGS T of G we define T̄ = {σ1σ2 . . . σt|σ1, σ2, . . . , σt ∈ G}.

k

It is clear that if T ⊂ G then T̄ ⊂< T >⊂ G. If T is a SGS for G then G ⊂ T̄ . Now, returning to
our original problem of whether or not π belongs to G, we can give the following algorithm:

MEM-WITH-SGS(π,G, T ) // Does the group G with SGS T conain π?
let k = k(π)
let j = π−1(k)
let σt ∈ T such that σt(j) = k, k(σt) = k

let σ1, σ2, . . . , σt−1 generate πσk
−1 in T̄

Output(σ1, σ2, . . . , σt)

Note that this algorithm also shows G ⊂ T̄ . For a proof see Professor Sudan’s notes.
Since the above algorithm is very efficient, we see that if we had a SGS for G then we could easily

tell whether π belongs to G or not. Thus, given G with some set of generators S we will construct a
SGS. Once we do this, we solve our problem of deciding π ∈ G.

The idea for building a SGS for T is to start with the empty set and successively add in suitable
elements, where suitable means that we will get a SGS at the end. Basically while there are elements
that are not in T̄ but are in < T ∪ S >, we will add some suitable σ to T . Note that there is a big
difference in the notion of < T > and T̄ in that in T̄ we can only “jugle right to left”. Indeed, if in the
illustration below σ2 ∈ T ∪ S is the upper permutation and σ1 ∈ T ∪ S the lower one, then we can tell
that σ1σ2 ∈< T ∪ S >, whereas it is not sure that σ1σ2 is in T̄ .
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We can obtain a SGS for G is by the followong procedure. Set T = ∅ at the beginning, then:

ADD-ELEM(S, T, σ)
if there is τ ∈ T such that k(τ) = k(σ) = k and j = σ−1(k) = τ−1(k)
then ADD-ELEM(S, T, στ−1)
else add σ to T .
See illustration for an explanation of the algorithm:

fixed part identity

perm sigma 

does there exist tau?? 

try generate sigma * tau inverse 

Lemma. If (1) T ⊂< S >,
(2) S ⊂ T̄ ,
(3) for every σ1, σ2 ∈ T , σ1σ2 ∈ T̄ ,
then T is a SGS for < S >.
For a careful proof take a look at Professor Sudan’s notes.
An idea here how to prove this:
Part 1. It follows from (1), (2), (3), that < S >⊂ T̄ .
T̄ closed under multiplication; use subtle induction.
Part 2. Using above we claim that T is a SGS for < S >.
Given π ∈< S >, k(π) = k, π(j) = k, we need to show that there exists π′ ∈ T such that k(π′) =

k, π′(j) = k. If π = π1π2 . . . πl, with π1, π2, l . . . , πl ∈ T then πl satisfies the condition.
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