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Lecture 2
Lecturer: Madhu Sudan Scribe: Joshua A. Grochow

This lecture begins a brief introduction to the algebraic structures we will be using throughout the
course – groups, rings, and fields – and some of their elementary properties. We recommend Finite
Fields and Their Applications by Lidl and Niedereitter as a reference.

1 Groups

A group is one of the most basic algebraic structures, specified by a single binary operation and its
properties:

Definition 1 A group G consists of a set, usually also denoted G, and a binary operation · : G×G → G
satisfying the following properties:

1. Associativity: for all a, b, c ∈ G, (a · b) · c = a · (b · c)
2. Identity: there exists an identity element e ∈ G such that a · e = e · a = a for all a ∈ G.

3. Inverses: For each a ∈ G, there exists an element a−1 such that a−1 · a = a · a−1 = e.

A semigroup is defined similarly, but need not have inverses1.
A group or semigroup is called Abelian if in addition the operation is commutative:

4. For all a, b ∈ G, a · b = b · a
Typically the group operation · is called “multiplication” and is omitted in notation: thus we write

ab rather than a · b. Generally if the group operation is denoted by addition +, it is assumed that the
group is Abelian. When we wish to emphasize the group operation, we may write (G, ·).

The standard Boolean algebra with the operation of ∧ is an example of a semigroup: 1 is the identity,
but 0 does not have an inverse, since 0 ∧ x = 0 for any x.

The following are some useful properties of groups that are not difficult to prove. Let G be a group.

• Multiplication by any x ∈ G is injective: that is, ax = bx iff a = b.

• The equation ab = c, a, b, c ∈ G has a unique solution whenever any two of a, b, c are specified. In
particular, the identity is unique, and inverses are unique.

The order of a group G is the number of elements of G, and is denoted |G|.
A subgroup H of a group G is a subset of G which is a group under the operation of G restricted

to H. We write H ≤ G. In particular, a subset H ⊆ G is a subgroup if it is closed under the operation
of G.2

A (left) coset of a subgroup H ≤ G is a set aH = {ah|h ∈ H}. Two (left) cosets aH and bH are
either disjoint or equal. Since multiplication is injective, the cosets of H are the same size as H, and
thus H partitions G into equal-sized parts. This leads to Lagrange’s Theorem: |H| divides |G|.3 We can
now prove a generalized version of Fermat’s Little Theorem:

Theorem 2 (Fermat’s Little Theorem) 4 For every finite group G, for all a ∈ G, a|G| = e.

1Some authors also allow semigroups to lack an identity element, and call semigroups with identity monoids.
2When G is infinite, a subset H must also contain inverses to be a subgroup. When G is finite, closure under the

operation of G provides inverses, since for all a ∈ G, a−1 = an for some finite positive n.
3For those who know something about multiplication of infinite cardinals, this theorem holds when H and G are infinite

as well.
4Abstract group theory was not developed until well after Fermat’s time. Fermat’s Little Theorem was originally that

ap−1 ≡ 1 mod p for all nonzero a in the integers modulo any prime p. Note that the nonzero integers modulo p form a
multiplicative group of order p− 1.
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Proof Consider the subgroup H generated by a: H = {ai|i ∈ Z}. Since G is finite, the infinite
sequence a0 = e, a1, a2, a3, . . . must repeat, say ai = aj , i < j. Let k = j − i. Multiplying both
sides by a−i = (a−1)i, we get aj−i = ak = e. Suppose k is the least positive integer for which this
holds. Then H = {a0, a1, a2, . . . , ak−1}, and thus |H| = k. By Lagrange’s Theorem, k divides |G|, so
a|G| = (ak)|G|/k = e.

The order of a ∈ G is the least k such that ak = e. This is consistent with the definition of order of
a group, as the order of a is the order of the subgroup generated by a.

2 Rings and Fields

A ring is, in some sense, the next most basic algebraic structure, involving two related binary operations:

Definition 3 A ring R consists of a set R and two binary operations + (“addition”) and · (“multipli-
cation”) on R satisfying:

1. (R, +) is an Abelian group with identity denoted 0.

2. (R, ·) is a semigroup with identity denoted 1. (Some authors do not require a ring to contain a
multiplicative identity.)

3. Multiplication distributes over addition: a(b + c) = ab + ac and (b + c)a = ba + ca.

We will generally only be concerned with commutative rings, i.e. rings in which multiplication is
commutative. The canonical example of a ring is the integers Z under the standard operations of addition
and multiplication.

Definition 4 A field F is a commutative ring in which every non-zero element has a multiplicative
inverse. Equivalently, (F − {0}, ·) is an Abelian group.

The rationals, the reals, and the complex numbers are all fields. The integers modulo p for prime p
are also fields.

An integral domain is a ring in which ab = 0 implies a = 0 or b = 0. An example of a non-integral
domain is the integers modulo n, where n is not prime: if n = pq is a nontrivial factorization of n, then
pq ≡ 0 modulo n, but neither p nor q is zero mod n. Square matrices are another example.

We will now prove two facts which make integral domains similar to fields.

Fact 5 Any finite integral domain R is a field.

We will prove this fact two different ways: the first is often used in abstract algebra textbooks, while
the second lends itself to a slightly better algorithm for computing the inverse of an element.
Proof Let a be a nonzero element of R. Examine the products P = {ba|b ∈ R}. These are all distinct,
as ba = ca ⇒ (b − c)a = 0 ⇒ b = c. Since R is finite, P = R, and thus there is some b ∈ R such that
ba = 1.

Proof Let a be a nonzero element of R. Examine the powers of a. The sequence a0, a1, a2, . . . must
repeat eventually since R is finite, say ai = aj , i < j. Then ai(1 − aj−i) = 0. Since R is an integral
domain, ai 6= 0, so 1− aj−i = 0, and thus the inverse of a is given by aj−i−1.

Definition 6 The field of fractions R̃ of an integral domain R is {(a, b)|a, b ∈ R, b 6= 0} modulo the
equivalence (a, b) ∼ (c, d) iff ad = bc, with addition and multiplication defined as follows:

(a, b) · (c, d) = (ac, bd)
(a, b) + (c, d) = (ad + bc, bd)
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Note that R̃ is a field5 containing R as the elements (a, 1).
Given a ring R, we now construct the ring R[x] of polynomials in one variable x with coefficients in

the ring R. An element of R[x] is given by the coefficients of a polynomial (a0, a1, . . . , ad) with ai ∈ R.
(We take these modulo the equivalence relation (a0, a1, . . . , ad, 0, 0, . . . , 0) ∼ (a0, . . . , ad).) Addition of
two such sequences is carried out component-wise, where one sequence may be extended by zeros on the
right to match the length of the other sequence. Multiplication of two sequences is given by:

(a0, . . . , ad) · (b0, . . . , be) = (c0, . . . , ce+d)

where ck =
∑k

i=0 aibk−i.
The polynomial ring R[x] often inherits many properties of R. Note that if R is an integral domain,

then so is R[x].
A subring is a subset of a ring which is itself a ring, except that it need not contain the identity

element. The subrings of Z are of the form nZ = {nk|k ∈ Z}.

Definition 7 An ideal I ⊆ R is a subring with the additional property that a ∈ I implies ar ∈ I for
any r ∈ R.

If an ideal I ⊆ R contains 1, then I = R. As an example, any subring of Z is also an ideal (this is a
very special property of the integers and does not hold in most rings).

Ideals are particularly nice subrings, because they allow for the following construction:

Definition 8 Given a ring R and ideal I, the quotient ring R/I, read “R modulo I”, is the set of cosets
a+I of I as an additive subgroup of (R, +). Addition and multiplication are as expected: (a+I)+(b+I) =
(a + b) + I and (a + I)(b + I) = ab + I.

In studying a ring, it is often useful to examine its quotient rings R/I, as they are usually simpler
than R itself but may retain many of its properties. One fimilar example of this is when we examine
the integers modulo n, which we may now write Z/nZ. In particular, we have the Chinese Remainder
Theorem (CRT). Over the integers, the CRT says that m modulo n is uniquely specified by m modulo
pi where

∏
pi = n and the pi are relatively prime. We will now generalize this to rings and ideals.

Given two ideals I, J ⊂ R, we have that I ∩ J and IJ = {∑ riaibi|ri ∈ R, ai ∈ I, bi ∈ J} are both
ideals. While this last definition is somewhat unwieldy, note that it is the smallest ideal containing
all elements of the form ab where a ∈ I and b ∈ J , since ideals must be closed under addition and
multiplication by arbitrary ring elements. Note that IJ ⊆ I ∩ J .

We will say that I and J are relatively prime if IJ = I ∩ J . (Note that this indeed holds for the
ideals nZ and mZ when n and m are relatively prime integers.) We can now state the more general form
of the CRT:

Theorem 9 (Chinese Remainder Theorem) If I1, . . . , Ik are relatively prime ideals of a ring R,
then R/(

∏
Ii) ∼= (R/I1)× · · · × (R/Ik).

The proof of this is not much more difficult than the proof of the CRT for the integers, and is left as
an exercise.

3 Factorization

Definition 10 An element a ∈ R is called a unit if a has a multiplicative inverse in R.
5A similar construction can be defined for non-integral domains R, but the details are a bit more complicated, and the

resulting structure will not be a field.
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Definition 11 A ring R is a factorization domain if given any non-unit a ∈ R, there exists a positive
integer d such that any factorization of a into non-units a1, . . . , ak (that is, a = a1a2 · · · ak) has k ≤ d.
(This is not a standard definition.)

Definition 12 An element a ∈ R is irreducible if a = pq implies that one of p or q is a unit.

Definition 13 A ring R is a unique factorization domain, or UFD, if every element of a ∈ R may
be factored uniquely into irreducibles. This uniqueness is taken up to re-ordering and multiplication by
units: if pi and qi are irreducible, and a = p1 · · · pd = q1 · · · qe, then e = d and there is some permutation
π such that pi = uiqπi for some units ui, 1 ≤ i ≤ d.

The integers are a UFD.
As an example of a factorization domain which is not a UFD, we adjoin the square root of 5 to Z:

Z[
√

5] = {a + b
√

5|a, b ∈ Z}. Then we have 4 = 2 · 2 = (
√

5 + 1)(
√

5− 1). For this to be a valid example,
you must verify that 2 and

√
5± 1 are irreducible in Z[

√
5].

As an example of a ring which is not even a factorization domain, we adjoin the n-th roots of 2 to
the integers for all positive n. Then we have Z[21/2, 21/3, 21/4, . . .]. Suppose this were a factorization
domain, and let d be the bound on the length of factorizations of 2. Let n = d + 1. Then we can factor
2 as 2 = 21/n · 21/n · · · 21/n, which has n > d non-unit factors. Thus no such d exists, and this is not a
factorization domain.

Finally, as a claim which we will prove next time, if R is a UFD, then so is the polynomial ring R[x].
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