Lecture 2

Lecturer: Madhu Sudan
Scribe: Joshua A. Grochow

This lecture begins a brief introduction to the algebraic structures we will be using throughout the course - groups, rings, and fields - and some of their elementary properties. We recommend Finite Fields and Their Applications by Lidl and Niedereitter as a reference.

1 Groups

A group is one of the most basic algebraic structures, specified by a single binary operation and its properties:

Definition 1 A group G consists of a set, usually also denoted G, and a binary operation : : $G \times G \rightarrow G$ satisfying the following properties:

1. Associativity: for all $a, b, c \in G,(a \cdot b) \cdot c=a \cdot(b \cdot c)$
2. Identity: there exists an identity element $e \in G$ such that $a \cdot e=e \cdot a=a$ for all $a \in G$.
3. Inverses: For each $a \in G$, there exists an element a^{-1} such that $a^{-1} \cdot a=a \cdot a^{-1}=e$.

A semigroup is defined similarly, but need not have inverses ${ }^{1}$.
A group or semigroup is called Abelian if in addition the operation is commutative:
4. For all $a, b \in G, a \cdot b=b \cdot a$

Typically the group operation • is called "multiplication" and is omitted in notation: thus we write $a b$ rather than $a \cdot b$. Generally if the group operation is denoted by addition + , it is assumed that the group is Abelian. When we wish to emphasize the group operation, we may write (G, \cdot).

The standard Boolean algebra with the operation of \wedge is an example of a semigroup: 1 is the identity, but 0 does not have an inverse, since $0 \wedge x=0$ for any x.

The following are some useful properties of groups that are not difficult to prove. Let G be a group.

- Multiplication by any $x \in G$ is injective: that is, $a x=b x$ iff $a=b$.
- The equation $a b=c, a, b, c \in G$ has a unique solution whenever any two of a, b, c are specified. In particular, the identity is unique, and inverses are unique.

The order of a group G is the number of elements of G, and is denoted $|G|$.
A subgroup H of a group G is a subset of G which is a group under the operation of G restricted to H. We write $H \leq G$. In particular, a subset $H \subseteq G$ is a subgroup if it is closed under the operation of G. ${ }^{2}$

A (left) coset of a subgroup $H \leq G$ is a set $a H=\{a h \mid h \in H\}$. Two (left) cosets $a H$ and $b H$ are either disjoint or equal. Since multiplication is injective, the cosets of H are the same size as H, and thus H partitions G into equal-sized parts. This leads to Lagrange's Theorem: $|H|$ divides $|G| .^{3}$ We can now prove a generalized version of Fermat's Little Theorem:

Theorem 2 (Fermat's Little Theorem) ${ }^{4}$ For every finite group G, for all $a \in G$, $a^{|G|}=e$.

[^0]Proof Consider the subgroup H generated by a : $H=\left\{a^{i} \mid i \in \mathbb{Z}\right\}$. Since G is finite, the infinite sequence $a^{0}=e, a^{1}, a^{2}, a^{3}, \ldots$ must repeat, say $a^{i}=a^{j}, i<j$. Let $k=j-i$. Multiplying both sides by $a^{-i}=\left(a^{-1}\right)^{i}$, we get $a^{j-i}=a^{k}=e$. Suppose k is the least positive integer for which this holds. Then $H=\left\{a^{0}, a^{1}, a^{2}, \ldots, a^{k-1}\right\}$, and thus $|H|=k$. By Lagrange's Theorem, k divides $|G|$, so $a^{|G|}=\left(a^{k}\right)^{|G| / k}=e$.

The order of $a \in G$ is the least k such that $a^{k}=e$. This is consistent with the definition of order of a group, as the order of a is the order of the subgroup generated by a.

2 Rings and Fields

A ring is, in some sense, the next most basic algebraic structure, involving two related binary operations:
Definition 3 aring R consists of a set R and two binary operations + ("addition") and • ("multiplication") on R satisfying:

1. $(R,+)$ is an Abelian group with identity denoted 0 .
2. (R, \cdot) is a semigroup with identity denoted 1. (Some authors do not require a ring to contain a multiplicative identity.)
3. Multiplication distributes over addition: $a(b+c)=a b+a c$ and $(b+c) a=b a+c a$.

We will generally only be concerned with commutative rings, i.e. rings in which multiplication is commutative. The canonical example of a ring is the integers \mathbb{Z} under the standard operations of addition and multiplication.

Definition $4 A$ field F is a commutative ring in which every non-zero element has a multiplicative inverse. Equivalently, $(F-\{0\}, \cdot)$ is an Abelian group.

The rationals, the reals, and the complex numbers are all fields. The integers modulo p for prime p are also fields.

An integral domain is a ring in which $a b=0$ implies $a=0$ or $b=0$. An example of a non-integral domain is the integers modulo n, where n is not prime: if $n=p q$ is a nontrivial factorization of n, then $p q \equiv 0$ modulo n, but neither p nor q is zero $\bmod n$. Square matrices are another example.

We will now prove two facts which make integral domains similar to fields.
Fact 5 Any finite integral domain R is a field.
We will prove this fact two different ways: the first is often used in abstract algebra textbooks, while the second lends itself to a slightly better algorithm for computing the inverse of an element.
Proof Let a be a nonzero element of R. Examine the products $P=\{b a \mid b \in R\}$. These are all distinct, as $b a=c a \Rightarrow(b-c) a=0 \Rightarrow b=c$. Since R is finite, $P=R$, and thus there is some $b \in R$ such that $b a=1$.

Proof Let a be a nonzero element of R. Examine the powers of a. The sequence $a^{0}, a^{1}, a^{2}, \ldots$ must repeat eventually since R is finite, say $a^{i}=a^{j}, i<j$. Then $a^{i}\left(1-a^{j-i}\right)=0$. Since R is an integral domain, $a^{i} \neq 0$, so $1-a^{j-i}=0$, and thus the inverse of a is given by a^{j-i-1}.

Definition 6 The field of fractions \tilde{R} of an integral domain R is $\{(a, b) \mid a, b \in R, b \neq 0\}$ modulo the equivalence $(a, b) \sim(c, d)$ iff $a d=b c$, with addition and multiplication defined as follows:

$$
\begin{aligned}
(a, b) \cdot(c, d) & =(a c, b d) \\
(a, b)+(c, d) & =(a d+b c, b d)
\end{aligned}
$$

Note that \tilde{R} is a field ${ }^{5}$ containing R as the elements $(a, 1)$.
Given a ring R, we now construct the ring $R[x]$ of polynomials in one variable x with coefficients in the ring R. An element of $R[x]$ is given by the coefficients of a polynomial $\left(a_{0}, a_{1}, \ldots, a_{d}\right)$ with $a_{i} \in R$. (We take these modulo the equivalence relation ($a_{0}, a_{1}, \ldots, a_{d}, 0,0, \ldots, 0$) $\sim\left(a_{0}, \ldots, a_{d}\right)$.) Addition of two such sequences is carried out component-wise, where one sequence may be extended by zeros on the right to match the length of the other sequence. Multiplication of two sequences is given by:

$$
\left(a_{0}, \ldots, a_{d}\right) \cdot\left(b_{0}, \ldots, b_{e}\right)=\left(c_{0}, \ldots, c_{e+d}\right)
$$

where $c_{k}=\sum_{i=0}^{k} a_{i} b_{k-i}$.
The polynomial ring $R[x]$ often inherits many properties of R. Note that if R is an integral domain, then so is $R[x]$.

A subring is a subset of a ring which is itself a ring, except that it need not contain the identity element. The subrings of \mathbb{Z} are of the form $n \mathbb{Z}=\{n k \mid k \in \mathbb{Z}\}$.

Definition 7 An ideal $I \subseteq R$ is a subring with the additional property that $a \in I$ implies ar $\in I$ for any $r \in R$.

If an ideal $I \subseteq R$ contains 1 , then $I=R$. As an example, any subring of \mathbb{Z} is also an ideal (this is a very special property of the integers and does not hold in most rings).

Ideals are particularly nice subrings, because they allow for the following construction:
Definition 8 Given a ring R and ideal I, the quotient ring R / I, read " R modulo I ", is the set of cosets $a+I$ of I as an additive subgroup of $(R,+)$. Addition and multiplication are as expected: $(a+I)+(b+I)=$ $(a+b)+I$ and $(a+I)(b+I)=a b+I$.

In studying a ring, it is often useful to examine its quotient rings R / I, as they are usually simpler than R itself but may retain many of its properties. One fimilar example of this is when we examine the integers modulo n, which we may now write $\mathbb{Z} / n \mathbb{Z}$. In particular, we have the Chinese Remainder Theorem (CRT). Over the integers, the CRT says that m modulo n is uniquely specified by modulo p_{i} where $\prod p_{i}=n$ and the p_{i} are relatively prime. We will now generalize this to rings and ideals.

Given two ideals $I, J \subset R$, we have that $I \cap J$ and $I J=\left\{\sum r_{i} a_{i} b_{i} \mid r_{i} \in R, a_{i} \in I, b_{i} \in J\right\}$ are both ideals. While this last definition is somewhat unwieldy, note that it is the smallest ideal containing all elements of the form $a b$ where $a \in I$ and $b \in J$, since ideals must be closed under addition and multiplication by arbitrary ring elements. Note that $I J \subseteq I \cap J$.

We will say that I and J are relatively prime if $I J=I \cap J$. (Note that this indeed holds for the ideals $n \mathbb{Z}$ and $m \mathbb{Z}$ when n and m are relatively prime integers.) We can now state the more general form of the CRT:

Theorem 9 (Chinese Remainder Theorem) If I_{1}, \ldots, I_{k} are relatively prime ideals of a ring R, then $R /\left(\prod I_{i}\right) \cong\left(R / I_{1}\right) \times \cdots \times\left(R / I_{k}\right)$.

The proof of this is not much more difficult than the proof of the CRT for the integers, and is left as an exercise.

3 Factorization

Definition 10 An element $a \in R$ is called a unit if a has a multiplicative inverse in R.

[^1]Definition $11 A$ ring R is a factorization domain if given any non-unit $a \in R$, there exists a positive integer d such that any factorization of a into non-units a_{1}, \ldots, a_{k} (that is, $a=a_{1} a_{2} \cdots a_{k}$) has $k \leq d$. (This is not a standard definition.)

Definition 12 An element $a \in R$ is irreducible if $a=p q$ implies that one of p or q is a unit.
Definition $13 A$ ring R is a unique factorization domain, or UFD, if every element of $a \in R$ may be factored uniquely into irreducibles. This uniqueness is taken up to re-ordering and multiplication by units: if p_{i} and q_{i} are irreducible, and $a=p_{1} \cdots p_{d}=q_{1} \cdots q_{e}$, then $e=d$ and there is some permutation π such that $p_{i}=u_{i} q_{\pi i}$ for some units $u_{i}, 1 \leq i \leq d$.

The integers are a UFD.
As an example of a factorization domain which is not a UFD, we adjoin the square root of 5 to \mathbb{Z} : $\mathbb{Z}[\sqrt{5}]=\{a+b \sqrt{5} \mid a, b \in \mathbb{Z}\}$. Then we have $4=2 \cdot 2=(\sqrt{5}+1)(\sqrt{5}-1)$. For this to be a valid example, you must verify that 2 and $\sqrt{5} \pm 1$ are irreducible in $\mathbb{Z}[\sqrt{5}]$.

As an example of a ring which is not even a factorization domain, we adjoin the n-th roots of 2 to the integers for all positive n. Then we have $\mathbb{Z}\left[2^{1 / 2}, 2^{1 / 3}, 2^{1 / 4}, \ldots\right]$. Suppose this were a factorization domain, and let d be the bound on the length of factorizations of 2 . Let $n=d+1$. Then we can factor 2 as $2=2^{1 / n} \cdot 2^{1 / n} \cdots 2^{1 / n}$, which has $n>d$ non-unit factors. Thus no such d exists, and this is not a factorization domain.

Finally, as a claim which we will prove next time, if R is a UFD, then so is the polynomial ring $R[x]$.

[^0]: ${ }^{1}$ Some authors also allow semigroups to lack an identity element, and call semigroups with identity monoids.
 ${ }^{2}$ When G is infinite, a subset H must also contain inverses to be a subgroup. When G is finite, closure under the operation of G provides inverses, since for all $a \in G, a^{-1}=a^{n}$ for some finite positive n.
 ${ }^{3}$ For those who know something about multiplication of infinite cardinals, this theorem holds when H and G are infinite as well.
 ${ }^{4}$ Abstract group theory was not developed until well after Fermat's time. Fermat's Little Theorem was originally that $a^{p-1} \equiv 1 \bmod p$ for all nonzero a in the integers modulo any prime p. Note that the nonzero integers modulo p form a multiplicative group of order $p-1$.

[^1]: ${ }^{5}$ A similar construction can be defined for non-integral domains R, but the details are a bit more complicated, and the resulting structure will not be a field.

