
Today

• Algebraic codes

• Reed-Solomon Codes

• Reed-Muller Codes

• Hadamard Codes as a special case

• The Plotkin Bound
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The story so far

• Hamming defines codes.

• Shannon’s results: Motivate need for

asymptotically good codes (codes with

constant relative minimum distance,

constant rate and constant alphabet).

• Have only two constructions:

− Hamming codes: Good Rate but small

distance.

− Random codes: Asymptotically good,

but non-constructive.
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What next

• Exploit algebra.

• Use it to obtain a family of codes over large

alphabet. (Reed-Solomon)

• Will try to reduce alphabet size

algebraically. (Reed-Muller).

• Get binary codes - Hadamard codes.

• Plotkin Bound.
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Reed-Solomon Codes

• Discovered in the context of coding theory

by Reed and Solomon in 1960.

• Discovered earlier in the context of block

designs by Bush. (Hmph!)

• Extremely simple codes + analysis.

• But can be easily obscured! (See any text

on coding theory!)
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Definition

• RS codes specified by:

− Field Fq.

− Parameters n, k.

− Vector a = 〈α1, . . . , αn〉 of distinct

elements in Fq. (Need n ≤ q.)

• Encoding as follows:

− Associate message m = 〈m0, . . . ,mk−1〉
with polynomial p(x) = m0+m1x+· · ·+
mk−1x

k−1 of degree less than k.

− Encoding: p 7→ 〈p(α1), . . . , p(αn)〉.
• Parameters: [n, k, n− k + 1]q code for k ≤

n ≤ q. Distance follows from: “Non-zero

degree k − 1 polynomial has at most k

roots”. (Hold over all fields? When else?)
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The large alphabet issue

• Why is it reasonable to have large

alphabets?

• In practice: CDs/DVDs think of single byte

as a single symbol. Why is the Hamming

metric right?

• Error often bursty! When single bit of

byte is corrupted all nearby symbols also

unreliable. So might as well treat them

together!

• Even if we don’t - RS codes are interesting.

• Let q = n and write element of Fq as log n

bit string.
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• RS code becomes a [n log n, k log n, n−k+

1]2 code.

• Example: k = n − 4, then get approx.

[N,N − 4 log N, 5]2 code.

• Hamming/Volume bound: Distance 5 code

must have k ≤ N − 2 log N .

• So our defect is at most factor of two worse

than best possible.

c©Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895 7

Reducing alphabet size: Bivariate

polynomials

• Bottleneck in increasing length of code:

Need more distinct elements!

• Way around - use more variables.

• Example:

− Think of message as m = 〈mij〉i,j<
√

k

as matrix.

− Associate bivariate polynomial p(x, y) of

degree at most
√

k.

− Evaluate at all points in S × S where

S ⊆ Fq.

− Using S = Fq gives n = q2. Longer!

• Distance = ?
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Schwartz-Zippel Lemma

Theorem: m-variate polynomial of total

degree d is zero on at most d/|S| fraction

of the inputs in Sm.

• Will choose x1, . . . , xm at random from

Sm and argue that random choice gives

zero value with probability at most d/|S|.

• Perform induction on m. Base case m = 1

clear.

• Write polynomial p(x1, . . . , xm) as

p1(x1, . . . , xm−1)x
dm
m + lesser degree terms

in xm.

• Pick a1, . . . , am−1 at random from Sm−1.
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• Prob. p1(a1, . . . , am−1) = 0 at most (d −
dm)/|S| by induction.

• Assume above doesn’t happen. Let

g(xm) = p(a1, . . . , am−1, xm). g is a non-

zero polynomial of degree dm. Choice

xm = am makes it zero w.p. at most

dm/|S|. Else p(a1, . . . , am) 6= 0.

• Union bound: Prob. of being zero at most

d/|S|.
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Schwartz-Zippel Lemma (contd.)

Some myths about the Lemma:

• That it is a Lemma: Actually a theorem.

• That it is due to Schwartz+Zippel:

Actually used many times in algebra/algebraic

geometry/coding theory before.

• That its discovery in theoretical computer

science is due to Schwartz/Zippel

alone: Also discovered by DeMillo+Lipton

independently!

• Still nice to have a named object and we

will perpetuate the myth.
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Back to bivariate polynomials

• Bivariate polynomials give [n, k, d] code for

d ≥ n − k − (
√

k(2q −
√

k).

• Why this strange way of writing it? Need

to see how much worse than n − k it gets.

• Can improve bound to d ≥ n−k−(
√

k(2q−
2
√

k) by paying more attention.

• So certainly not as good as RS codes. But

do have significantly longer code.
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m-variate polynomials

• n = qm, k =
(

m+`
m

)

if degree of polynomial

`. d = (1 − `/q) · n.

• Codes called Reed-Muller codes.

• Asymptotically good?

− Can’t be. Need m = logq n variables and

constant degree ` < q.

− k =
(

m+`
m

)

grows as m` - polynomial in

m, while n = qm grows exponentially in

m.

• Coding theorists try ` > q, but with

individual degree per variable at most q−1.

Gives interesting range of parameters (see

exercise), but not asymptotically good.
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A special case: Hadamard codes

• Let q = 2 and ` = 1. Gives [2`, `+1, 2`−1]2
code.

• Variants ...

− [n, log2 n, n/2] - equidistant code.

− [2n, log2 n, n/2] - code using all rows and

complements.

− [n − 1, log2 n, n/2] - code by assuming

w.l.o.g. first column is all 1’s and deleting

this column.

• First is weaker than second and third, but

has additional property. Second is what we

get from polynomials. Third is the dual of

the Hamming code. All essentially same
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from our perspective. Give similar flavor of

results.
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Plotkin Bound

• Given any (n, k, n/2)2] code, k ≤ 1 +

log2 n.

• Projection technique: If an (n, k, d)q code

exists, then so does an (n − r, k − r, d)q

code.

• Putting them together: k ≤ 1 + log2 n +

n − 2d. Asymptotically, R + 2δ ≤ 1 for

binary codes.
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