
Today

• More on Shannon’s theory

− Proof of converse.

− Few words on generality.

− Contrast with Hamming theory.

• Back to error-correcting codes: Goals.

• Tools:

− Probability theory:

− Algebra: Finite fields, Linear spaces.
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Proof of Converse Coding Theorem

• Intuition: For message m, let Sm ⊆ {0, 1}n

be the set of received words that decode to

m. (Sm = D−1(m)).

• Average size of D(m) = 2n−k.

• Volume of disc of radius pn around E(m)

is 2H(p)n.

• Intuition: If volume � 2n−k can’t have this

ball decoding to m — but we need to!

• Formalize?
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Proof of Converse Coding Theorem

(contd.)

Let Im,η be the indicator variable that is 1 iff

D((E(m) + η)) = m.

Let p′ < p be such that R > 1 − H(p′).
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Prob. [correct decoding ]

=
∑

η ∈ {0, 1}n
∑

m∈{0,1}k

Pr[m sent, η error and Im,η = 1]

≤
∑

η∈B(p′n,n)

Pr[η error] +
∑

η 6∈B(p′n,n)

∑

m

2−k ·
1

2H(p′)·n
· Im,η

≤ exp(−n) + 2−k−H(p′)n ·
∑

m,η

Im,η

= exp(−n) + 2−k−H(p′)n · 2n

≤ exp(−n)
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Generalizations of Shannon’s theorem

• Channels more general

− Input symbols Σ, Output symbols

Γ, where both may be infinite

(reals/complexes).

− Channel given by its probability transition

matrix P = Pσ,γ.

− Channel need not be independent - could

be Markovian (remembers finite amount

of state in determining next error bit).

• In almost all cases: random coding + mld

works.

• Always non-constructive.
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Some of the main contributions

• Rigorous Definition of elusive concepts:

Information, Randomness.

• Mathematical tools: Entropy, Mutual

information, Relative entropy.

• Theorems: Coding theorem, converse.

• Emphasis on the “feasible” as opposed to

“done”.
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Contrast between Hamming and

Shannon

• Works intertwined in time.

• Hamming’s work focusses on distance, and

image of E.

• Shannon’s work focusses on probabilities

only (no mention of distance) and E,D

but not properties of image of E.

• Hamming’s results more constructive,

definitions less so.

• Shannon’s results not constructive, though

definitions beg constructivitty.
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• Most important difference: modelling of

error — adversarial vs. probabilistic.

Accounts for the huge difference in our

ability to analyze one while having gaps in

the other.

• Nevertheless good to build Hamming like

codes, even when trying to solve the

Shannon problem.
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Our focus

• Codes, and associated encoding and

decoding functions.

• Distance is not the only measure, but we

will say what we can about it.

• Code parameters: n, k, d, q;

• typical goal: given three optimize fourth.

• Coarser goal: consider only R = k/n, δ =

d/n and q and given two, optimize the

third.

• In particular, can we get R, δ > 0 for

constant q?
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• Will combine with analysis of encoding

complexity and decoding complexity.
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Tools

• Probability tools:

− Linearity of expections, Union bound.

− Expectation of product of independent

r.v.s

− Tail inqualities: Markov, Chebychev,

Chernoff.

• Algebra

− Finite fields.

− Vector spaces over finite fields.

• Elementary combinatorics and algorithmics.
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Finite fields and linear error-correcting

codes

• Field: algebraic structure with addition,

multiplication, both commutative and

associative with inverses, and multiplication]

distributive over addition.

• Finite field: Number of elements finite.

Well known fact: field exists iff size is a

prime power. See lecture notes on algebra

for further details. Denote field of size q by

Fq.

• Vector spaces: V defined over a field F.

Addition of vectors, multiplication of vector

with “scalar” (i.e., field element) is defined,
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and finally an inner product (product of two

vectors yielding a scalar is defined).

• If alphabet is a field, then ambient space

Σn becomes a vector space F
n
q .

• If a code forms a vector space within F
n
q

then it is a linear code. Denoted [n, k, d]q
code.
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Why study this category?

• Linear codes are the most common.

• Seem to be as strong as general ones.

• Have succinct specification, efficient

encoding and efficient error-detecting

algorithms. Why? (Generator matrix and

Parity check matrix.)

• Linear algebra provides other useful

tools: Duals of codes provide interesting

constructions.

• Dual of linear code is code generated by

transpose of parity check matrix.
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Example: Dual of Hamming codes

• Message m = 〈m1, . . . ,m`〉.

• Encoding given by 〈〈m,x〉〉
x∈F

`
2−0

.

• Fact: (will prove later): m 6= 0 implies

Prx[〈〈m,x〉 = 0] = 1
2

• Implies dual of [2` − 1, 2` − ` − 1, 3]2
Hamming code is a [2` − 1, `, 2`−1] code.

• Often called the simplex code or the

Hadamard code. (If we add a coordinate

that is zero to all coordinates, and write 0s

as −1s, then the matrix whose rows are all

the codewords form a +1/−1 matrix whose

product with its transpose is a multiple of
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the identity matrix. Such matrices are

called Hadamard matrices, and hence the

code is called a Hadamard code.)

• Moral of the story: Duals of good codes

end up being good. No proven reason.
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Next few lectures

• Towards asymptotically good codes:

− Some good codes that are not

asymptotically good.

− Some compositions that lead to good

codes.
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