This week's Topics

Shannon's Work.

- Mathematical/Probabilistic Model of Communication.
- Definitions of Information, Entropy, Randomness.
- Noiseless Channel & Coding Theorem.
- Noisy Channel & Coding Theorem.
- Converses.
- Algorithmic challenges.

Detour from Error-correcting codes?

© Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

Goals/Options

- Noiseless case: Channel precious commodity. Would like to optimize usage.
- Noisy case: Would like to recover message despite errors.
- Source can "Encode" information.
- Receiver can "Decode" information.

Theories are very general: We will describe very specific cases only!

Shannon's Framework (1948)

Three entities: Source, Channel, and Receiver.

Source: Generates "message" - a sequence of bits/ symbols - according to some "stochastic" process S.

Communication Channel: Means of passing information from source to receiver. May introduce errors, where the error sequence is another stochastic process E.

Receiver: Knows the processes S and E, but would like to know what sequence was generated by the source.

© Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

_

Noiseless case: Example

- Channel transmits bits: $0 \rightarrow 0, 1 \rightarrow 1$. 1 bit per unit of time.
- Source produces a sequence of independent bits: 0 with probability 1-p and 1 with probability p.
- Question: Expected time to transmit *n* bits, generated by this source?

Noiseless Coding Theorem (for Example)

Let $H_2(p) = -(p \log_2 p + (1-p) \log_2 (1-p)).$

Noiseless Coding Theorem: Informally, expected time $\to H(p) \cdot n$ as $n \to \infty$.

Formally, for every $\epsilon>0$, there exists n_0 s.t. for every $n\geq n_0$,

 $\exists E: \{0,1\}^n \to \{0,1\}^* \text{ and } D: \{0,1\}^* \to \{0,1\}^n \text{ s.t.}$

- $\bullet \ \text{ For all } x \in \{0,1\}^n, D(E(x)) = x.$
- $\mathbf{E}_x[|E(x)|] \le (H(p) + \epsilon)n$.

Proof: Exercise.

© Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

Binary Entropy Function $H_2(p)$

- Plot H(p).
- Main significance?
 - Let $B_2(y,r) = \{x \in \{0,1\}^n | \Delta(x,y) \le r\}$ (*n* implied).
 - Let $Vol_2(r, n) = |B_2(0, r)|$.
 - Then $Vol_2(pn, n) = 2^{(H(p) + o(1))n}$

Entropy of a source

- Distribution $\mathcal D$ on finite set S is $\mathcal D:S\to [0,1]$ with $\sum_{x\in S}\mathcal D(x)=1.$
- Entropy: $H(\mathcal{D}) = \sum_{x \in S} -\mathcal{D}(x) \log_2 \mathcal{D}(x)$.
- Entropy of p-biased bit $H_2(p)$.
- Entropy quantifies randomness in a distribution.
- Coding theorem: Suffices to specify entropy
 # of bits (amortized, in expectation) to
 specify the point of the probability space.
- Fundamental notion in probability/information theory.

© Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

Noisy Case: Example

- Source produces 0/1 w.p. 1/2.
- Error channel: Binary Symmetric Channel with probability p (BSC $_p$), transmits 1 bit per unit of time faithfully with probability 1-p and flips it with probability p.
- Goal: How many source bits can be transmitted in n time units?
 - Can permit some error in recovery.
 - Error probability during recovery should be close to zero.
- Prevailing belief: Can only transmit o(n) bits.

8

Noisy Coding Theorem (for Example)

Theorem: (Informally) Can transmit $(1-H(p))\cdot n$ bits, with error probability going to zero exponentially fast.

(Formally) $\forall \epsilon > 0, \exists \delta > 0$ s.t. for all n:

Let $k=(1-H(p+\epsilon))n.$ Then $\exists E:\{0,1\}^k\to\{0,1\}^n$ and $\exists D:\{0,1\}^n\to\{0,1\}^k$ s.t.

$$\Pr_{\eta,x} \left[D(E(x) + \eta) \neq x \right] \le \exp(-\delta n),$$

where x is chosen according to the source and η independently according to BSC_p .

© Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

Proof of Lemma

- Will fix $x \in \{0,1\}^k$ and E(x) first and pick error η next, and then the rest of E last!
- η is *Bad* if it has weight more than $(p+\epsilon)n$.

$$\Pr_{n}[\eta \text{Bad}] \leq 2^{-\delta n}$$

(Chernoff bounds).

• x' Bad for x, η if $E(x') \in B_2(E(x) + \eta, (p + \epsilon)n)$.

$$\Pr_{E(x')}[x' \text{Bad for } x, \eta] \leq 2^{H(p+\epsilon)n}/2^n$$

11

• $\Pr_E[\exists x' \text{ Bad for } x, \eta] \leq 2^{k+H(p) \cdot n-n}$

The Encoding and Decoding Functions

- E chosen at random from all functions mapping $\{0,1\}^k \to \{0,1\}^n$.
- D chosen to be the brute force algorithm for every y, D(y) is the vector x that minimizes $\Delta(E(x), y)$.
- Far from constructive!!!
- But its a proof of concept!
- ullet Main lemma: For E,D as above, the probability of decoding failure is exponentially small, for any fixed message x.
- Power of the probabilistic method!

© Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

1/

- If η is not Bad, and no $x' \neq x$ is Bad for x, then $D(E(x) + \eta) = x$.
- Conclude that decoding fails with probability at most $e^{-\Omega(n)}$, over random choice of E, η (for every x, and so also if x is chosen at random).
- Conclude there exists E such that encoding and decoding lead to exponentially small error probability, provided $k+H(p)\cdot n\ll n$.

Converse to Coding Theorems

- Shannon also showed his results to be tight.
- For noisy case, 1-H(p) is the best possible rate ...
- ... no matter what E, D are!
- How to prove this?
- Intuition: Say we transmit E(x). W.h.p. # erroneous bits is $\approx pn$. In such case, symmetry implies no one received vector is likely w.p. more that $\binom{n}{pn} \approx 2^{-H(p)n}$. To have error probability close to zero, at least $2^{H(p)n}$ received vectors must decode to x. But then need $2^k \leq 2^n/2^{H(p)n}$.

© Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

Formal proof of the Converse

- η Easy if weight $\leq (p-\epsilon)n$. $\Pr_{\eta}[\eta \text{ Easy }] \leq \exp(-n)$. For any y of weight $\geq (p-\epsilon)n$, $\Pr[\eta=y] \leq 2^{-H(p-\epsilon)n}$.
- For $x \in \{0,1\}^k$ let $S_x \subseteq \{0,1\}^n = \{y|D(y)=x\}$. Have $\sum_x |S_x| = 2^n$.
- Pr[Decoding correctly]

$$= 2^{-k} \sum_{x \in \{0,1\}^k} \sum_{y \in S_x} \Pr_{\eta} [\eta = y - E(x)]$$

$$= \Pr_{\eta}[\eta \text{ Easy}] + 2^{-k} \sum_{x} \sum_{y \in S_{x}} \Pr_{\eta}[\eta = y - E(x) | \eta H$$

$$= \exp(-n) + 2^{-k} \cdot 2^{-H(p)n} \cdot 2^{n}$$

$$= \exp(-n)$$

© Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

1/

Importance of Shannon's Framework

- Examples considered so far are the baby examples!
- Theory is wide and general.
- But, essentially probabilistic + "informationtheoretic" not computational.
- For example, give explicit E! Give efficient
 D! Shannon's work does not.

More general source

- Allows for Markovian sources.
- Source described by a finite collection of states with a probability transition matrix.
- Each state corresponds to a fixed symbol of the output.
- Interesting example in the original paper: Markovian model of English. Computes the rate of English!

More general models of error

- i.i.d. case generally is a transition matrix from Σ to Γ . (Σ , Γ need not be finite! (Additive White Gaussian Channel). Yet capacity might be finite.)
- Also allows for Markovian error models. May be captured by a state diagram, with each state having its own transition matrix from Σ to Γ .

General theorem

- Every source has a Rate (based on entropy of the distribution it generates).
- Every channel has a Capacity.

Theorem: If Rate < Capacity, information transmission is feasible with error decreasing exponentially with length of transmission. If Rate > Capacity, information transmission is not feasible.

© Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

17

© Madhu Sudan, Fall 2004: Essential Coding Theory: MIT 6.895

10

Contrast with Hamming

- Main goal of Shannon Theory:
 - Constructive (polytime/linear-time/etc.) E, D.
 - Maximize rate = k/n where E : $\{0,1\}^k \rightarrow \{0,1\}^n$.
 - While minimizing $P_{\text{err}} = \Pr_{x,\eta}[D(E(x) + \eta) \neq x]$
- Hamming theory:
 - Explicit description of $\{E(x)\}_x$.
 - No focus on E, D itself.
 - Maximize k/n and d/n, where $d=\min_{x_1,x_2}\{\Delta(E(x_1),E(x_2))\}.$
- Interpretations: Shannon theory deals with probabilistic error. Hamming with

adversarial error. Engineering need: Closer to Shannon theory. However Hamming theory provided solutions, since min. distance seemed easier to analyze than $P_{\rm err}$.