
Administrivia

• Webpage:

http://theory.lcs.mit.edu/˜madhu/FT04.

• Send email to madhu@mit.edu to be added

to course mailing list. Critical!

• Sign up for scribing.

• Pset 1 out today. First part due in a week,

second in two weeks.

• Madhu’s office hours for now: Next

Tuesday 2:30pm-4pm.

• Course under perpetual development!

Limited staffing. Patience and constructive

criticism appreciated.
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Hamming’s Problem (1940s)

• Magnetic storage devices are prone to

making errors.

• How to store information (32 bit words) so

that any 1 bit flip (in any word) can be

corrected?

• Simple solution:

− Repeat every bit three times.

− Works. To correct 1 bit flip error, take

majority vote for each bit.

− Can store 10 “real” bits per word this

way. Efficiency of storage ≈ 1/3. Can

we do better?
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Hamming’s Solution - 1

• Break (32-bit) word into four blocks of size

7 each (discard four remaining bits).

• In each block apply a transform that maps

4 “real” bits into a 7 bit string, so that any

1 bit flip in a block can be corrected.

• How? Will show next.

• Result: Can now store 16 “real” bits per

word this way. Efficiency already up to 1

2
.
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[7, 4, 3]-Hamming code

• Will explain notation later.

• Let

G =











1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1











• Encode b = 〈b0b1b2b3〉 as b · G.

• Claim: If a 6= b, then a ·G and b ·G differ

in at least 3 coordinates.

• Will defer proof of claim.
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Hamming’s Notions

• Since codewords (i.e., b · G) differ in at

least 3 coordinates, can correct one error.

• Motivates Hamming distance, Hamming

weight, Error-correcting codes etc.

• Alphabet Σ of size q. Ambient space, Σn:

Includes codewords and their corruptions.

• Hamming distance between strings x,y ∈

Σn, denoted ∆(x,y), is # of coordinates i

s.t. xi 6= yi. (Converts ambient space into

metric space.)

• Hamming weight of z, denoted wt(z), is #

coordinate where z is non-zero.
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Hamming notions (contd.)

Code: Subset C ⊆ Σn.

Min. distance: Denoted ∆(C), is

minx6=y∈C{∆(x,y)}.

e error detecting code If up to e errors

happen, then codeword does not mutate

into any other code.

t error-correcting code If up to t errors

happen, then codeword is uniquely

determined (as the unique word within

distance t from the received word).

Proposition: C has min. dist. 2t + 1 ⇔ it is

2t error-detecting ⇔ it is t error-correcting.
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Standard notation/terminology

• q: Alphabet size

• n: Block length

• k: Message length, where |C| = qk.

• d: Min. distance of code.

• Code with above is an (n, k, d)q code.

[n, k, d]q code if linear. Omit q if

q = 2.

• k/n: Rate

• d/n: Relative distance.
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Back to Hamming code

• So we have an [7, 4, 3] code (modulo proof

of claim).

• Can correct 1 bit error.

• Storage efficiency (rate) approaches 4/7 (as

word size approached ∞).

• Will do better, by looking at proof of claim.
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Proof of Claim

Let H =























0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1























• Sub-Claim 1: {xG|x} = {y|y · H = 0}.

Simple linear algebra (mod 2). You’ll prove

this as part of Pset 1.

• Sub-claim 2: Exist codewords z1 6= z1 s.t.

∆(z1, z2) ≤ 2 iff exists y of weight at most

2 s.t. y · H = 0.
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• Let hi be ith row of H. Then y · H =
∑

i|yi=1
hi.

• Let y have weight 2 and say yi = yj = 1.

Then y ·H = hi +hj. But this is non-zero

since hi 6= hj. QED.
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Generalizing Hamming codes

• Important feature: Parity check matrix

should not have identical rows. But then

can do this for every `.

H` =















0 · · · 0 0 1

0 · · · 0 1 0

0 · · · 0 1 1
... . . . ... ... ...

1 · · · 1 1 1















• H` has ` columns, and 2`−1 rows.

• H` : Parity check matrix of `th Hamming

code.

• Message length of code = exercise. Implies

rate → 1.
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Summary of Hamming’s paper (1950)

• Defined Hamming metric and codes.

• Gave codes with d = 1, 2, 3, 4!

• d = 2: Parity check code.

• d = 3: We’ve seen.

• d = 4?

• Gave a tightness result: His codes have

maximum number of codewords. “Lower

bound”.

• Gave decoding “procedure”.
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Volume Bound

• Hamming Ball: B(x, r) = {w ∈

{0, 1}n | ∆(w, x) ≤ r}.

• Volume: Vol(r, n) = |B(x, r)|. (Notice

volume independent of x and Σ, given

|Σ| = q.)

• Hamming(/Volume/Packing) Bound:

− Basic Idea: Balls of radius t around

codewords of a t-error correcting code

don’t intersect.

− Quantitatively: 2k · Vol(t, n) ≤ 2n.

− For t = 1, get 2k · (n + 1) ≤ 2n or

k ≤ n − log
2
(n + 1).
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• Proves Hamming codes are optimal, when

they exist.
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Decoding the Hamming code

• Can recognize codewords? Yes - multiply

by H` and see if 0.

• What happens if we send codeword c and

ith bit gets flipped?

• Received vector r = c + ei.

• r · H = c · H + ei · H

= 0 + hi

= binary representation of i.

• r ·H gives binary rep’n of error coordinate!
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Rest of the course

• More history!

• More codes (larger d).

• More lower bounds (will see other

methods).

• More algorithms - decode less simple codes.

• More applications: Modern connections to

theoretical CS.
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Applications of error-correcting codes

• Obvious: Communication/Storage.

• Algorithms: Useful data structures.

• Complexity: Pseudorandomness (ε-biased

spaces, t-wise independent spaces),

Hardness amplification, PCPs.

• Cryptography: Secret sharing, Crypto-

schemes.

• Central object in extremal combinatorics:

relates to extractors, expanders, etc.

• Recreational Math.
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