- Webpage:
http://theory.lcs.mit.edu/~madhu/FT04.
- Send email to madhu@mit. edu to be added to course mailing list. Critical!
- Sign up for scribing.
- Pset 1 out today. First part due in a week, second in two weeks.
- Madhu's office hours for now: Next Tuesday 2:30pm-4pm.
- Course under perpetual development! Limited staffing. Patience and constructive criticism appreciated.

Hamming's Solution - 1

- Break (32-bit) word into four blocks of size 7 each (discard four remaining bits).
- In each block apply a transform that maps 4 "real" bits into a 7 bit string, so that any 1 bit flip in a block can be corrected.
- How? Will show next.
- Result: Can now store 16 "real" bits per word this way. Efficiency already up to $\frac{1}{2}$.
- Magnetic storage devices are prone to making errors.
- How to store information (32 bit words) so that any 1 bit flip (in any word) can be corrected?
- Simple solution:
- Repeat every bit three times.
- Works. To correct 1 bit flip error, take majority vote for each bit.
- Can store 10 "real" bits per word this way. Efficiency of storage $\approx 1 / 3$. Can we do better?
[7, 4, 3]-Hamming code
- Will explain notation later.
- Let

$$
G=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

- Encode $\mathbf{b}=\left\langle b_{0} b_{1} b_{2} b_{3}\right\rangle$ as $\mathbf{b} \cdot G$.
- Claim: If $\mathbf{a} \neq \mathbf{b}$, then $\mathbf{a} \cdot G$ and $\mathbf{b} \cdot G$ differ in at least 3 coordinates.
- Will defer proof of claim.
- Since codewords (i.e., b • G) differ in at least 3 coordinates, can correct one error.
- Motivates Hamming distance, Hamming weight, Error-correcting codes etc.
- Alphabet Σ of size q. Ambient space, Σ^{n} : Includes codewords and their corruptions.
- Hamming distance between strings $\mathbf{x}, \mathbf{y} \in$ Σ^{n}, denoted $\Delta(\mathbf{x}, \mathbf{y})$, is \# of coordinates i s.t. $x_{i} \neq y_{i}$. (Converts ambient space into metric space.)
- Hamming weight of \mathbf{z}, denoted $\mathrm{wt}(\mathbf{z})$, is \# coordinate where z is non-zero.
- q : Alphabet size
- n : Block length
- k : Message length, where $|C|=q^{k}$.
- d : Min. distance of code.
- Code with above is an $(n, k, d)_{q}$ code.
$[n, k, d]_{q}$ code if linear. Omit q if $q=2$.
- k / n : Rate
- d / n : Relative distance.

Code: Subset $C \subseteq \Sigma^{n}$.
Min. distance: Denoted $\Delta(C)$, is

$$
\min _{\mathrm{x} \neq \mathrm{y} \in C}\{\Delta(\mathrm{x}, \mathrm{y})\}
$$

e error detecting code If up to e errors happen, then codeword does not mutate into any other code.
t error-correcting code If up to t errors happen, then codeword is uniquely determined (as the unique word within distance t from the received word).

Proposition: C has min. dist. $2 t+1 \Leftrightarrow$ it is $2 t$ error-detecting \Leftrightarrow it is t error-correcting.

- So we have an $[7,4,3]$ code (modulo proof of claim).
- Can correct 1 bit error.
- Storage efficiency (rate) approaches $4 / 7$ (as word size approached ∞).
- Will do better, by looking at proof of claim.

Let $H=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$

- Sub-Claim 1: $\{\mathbf{x} G \mid \mathbf{x}\}=\{\mathbf{y} \mid \mathbf{y} \cdot H=0\}$. Simple linear algebra (mod 2). You'll prove this as part of Pset 1.
- Sub-claim 2: Exist codewords $\mathbf{z}_{1} \neq \mathbf{z}_{1}$ s.t. $\Delta\left(\mathbf{z}_{1}, \mathbf{z}_{2}\right) \leq 2$ iff exists y of weight at most 2 s.t. $\mathbf{y} \cdot H=0$.

Generalizing Hamming codes

- Important feature: Parity check matrix should not have identical rows. But then can do this for every ℓ.

$$
H_{\ell}=\left[\begin{array}{ccccc}
0 & \cdots & 0 & 0 & 1 \\
0 & \cdots & 0 & 1 & 0 \\
0 & \cdots & 0 & 1 & 1 \\
\vdots & \cdots & \vdots & \vdots & \vdots \\
1 & \cdots & 1 & 1 & 1
\end{array}\right]
$$

- H_{ℓ} has ℓ columns, and $2^{\ell-1}$ rows.
- H_{ℓ} : Parity check matrix of ℓ th Hamming code.
- Message length of code $=$ exercise. Implies rate $\rightarrow 1$.
- Let \mathbf{h}_{i} be i th row of H. Then $\mathbf{y} \cdot H=$ $\sum_{i \mid y_{i}=1} \mathbf{h}_{i}$.
- Let y have weight 2 and say $y_{i}=y_{j}=1$. Then $\mathbf{y} \cdot H=\mathbf{h}_{i}+\mathbf{h}_{j}$. But this is non-zero since $\mathbf{h}_{i} \neq \mathbf{h}_{j}$. QED.
- Defined Hamming metric and codes.
- Gave codes with $d=1,2,3,4$!
- $d=2$: Parity check code.
- $d=3$: We've seen.
- $d=4$?
- Gave a tightness result: His codes have maximum number of codewords. "Lower bound".
- Gave decoding "procedure".

Volume Bound

- Proves Hamming codes are optimal, when they exist.
- Hamming Ball: $B(x, r)=\{w \in$ $\left.\{0,1\}^{n} \mid \Delta(w, x) \leq r\right\}$.
- Volume: $\operatorname{Vol}(r, n)=|B(x, r)|$. (Notice volume independent of x and Σ, given $|\Sigma|=q$.
- Hamming(/Volume/Packing) Bound:
- Basic Idea: Balls of radius t around codewords of a t-error correcting code don't intersect.
- Quantitatively: $2^{k} \cdot \operatorname{Vol}(t, n) \leq 2^{n}$.
- For $t=1$, get $2^{k} \cdot(n+1) \leq 2^{n}$ or $k \leq n-\log _{2}(n+1)$.

Decoding the Hamming code

- Can recognize codewords? Yes - multiply by H_{ℓ} and see if 0 .
- What happens if we send codeword c and i th bit gets flipped?
- Received vector $\mathbf{r}=\mathbf{c}+\mathbf{e}_{i}$.
- $\mathbf{r} \cdot H=\mathbf{c} \cdot H+\mathbf{e}_{i} \cdot H$
$=0+\mathbf{h}_{i}$
$=$ binary representation of i.
- r • H gives binary rep'n of error coordinate!
- More history!
- More codes (larger d).
- More lower bounds (will see other methods).
- More algorithms - decode less simple codes.
- More applications: Modern connections to theoretical CS.
- Obvious: Communication/Storage.
- Algorithms: Useful data structures.
- Complexity: Pseudorandomness (ϵ-biased spaces, t-wise independent spaces), Hardness amplification, PCPs.
- Cryptography: Secret sharing, Cryptoschemes.
- Central object in extremal combinatorics: relates to extractors, expanders, etc.
- Recreational Math.

