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Lecture 15: Expander Codes

Lecturer: Madhu Sudan Scribe: Vinod Vaikuntanathan

Overview of this lecture: We study a new family of codes, based on expander graphs, that gives us
“good” rate and relative distance, and linear time decoding algorithms.

Some History

How efficient can decoding of linear codes be ? Gallager addressed this problem in his thesis (from
1965): he came up with codes that have a sparse parity-check matrix (also called Low-density Parity
Check or LDPC codes), and gave a decoding algorithm for such codes that he observed works well in
practice. However, he did not prove rigorous bounds on the performance of the decoding algorithm. He
also proved that a random LDPC code is asymptotically “good” with high probability.

Tanner, in 80’s studied LDPC codes, and proved that the performance of Gallager’s algorithm is
related to the girth of the (natural) bipartite graph representation of the parity-check matrix. Sipser
and Spielman were the first to analyze the codes in terms of expansion. They showed that good expansion
implies good distance of the code, as well as a good decoding algorithm.

1 Graph-Theoretic Codes

Lets look at a candidate construction of LDPC codes. Choose the n × m parity-check matrix H as
follows: (say m = n

2
)

Hij =

{

0 with probability 1 − 10

n
1 with probability 10

n

The probability that a row of H is the all 0 vector, is (1− 10

n )n/2, which is some constant. The expected
number of rows that are all 0 is, therefore, cn. What does this do to the distance of the code ? An all
0 row in the parity-check matrix means that the corresponding bit of the message does not affect the
codeword. In other words, take a codeword, flip a bit and we get another codeword (The distance is 1
!!)

Nevertheless, at this point, we assert that there is a way to show that ∃ parity-check matrices H such
that H has a constant number of 1’s per column, that gives an asymptotically good code. The following
are roughly the assertions made in Gallager’s thesis about such codes. (The latter assertion was proved)

1. There is a natural algorithm that “seems to” correct a large fraction of errors.

2. We know that for a relative distance δ, random codes give a rate of 1−H(δ). The assertion about
the graph-theoretic codes is that ∀ε ∃H having at most d 1′s per column, such that H is the
parity-check matrix of a code of relative distance δ and rate 1 − H(δ) − ε.

2 Graph Theoretic Framework

The n × m parity-check matrix H can be considered as a bipartite graph GH , in a natural way. Each
row of H is a left vertex of the graph and each column is a right vertex. If Hij = 1, then there is an
edge between the ith left vertex and the jth right vertex. A codeword x ∈ {0, 1}n is associated with an
assignment to the left vertices. The corresponding assignment to the right vertices is the result of the
product H · x. Therefore, an assignment to the left vertices is a codeword iff the assignment induced on
the right vertices is 0m. Thus, the bipartite graph GH defines a code in a natural way. The requirement
of low-density says that each right-vertex should have small (constant) degree.

To get a large rate, we require that m is much less than n. How do we get large distance ? Consider
a subset of the left vertices S, and the set of their neighbors Γ(S). If x ∈ Γ(S) is connected to an
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even number of vertices in S, then the assignment that (naturally) corresponds to the subset S is a
codeword. Therefore, informally, we want that, for each sufficiently small subset S of the left vertices,
all the vertices in Γ(S) have an even number of neighbors in S.

Before we move on, we want to introduce some notation: A bipartite graph is defined as G =
(L, R, E ⊆ L × R). For a set S ⊆ L, define its neighborhood Γ(S) = {v ∈ R | ∃u ∈ S s.t (u, v) ∈ E}.
Further, define Γodd(S) = {v ∈ R | #u ∈ S s.t (u, v) ∈ E is odd }.

Claim 1 G yields a code of distance δn if ∀S such that |S| < δn, |Γodd(S)| > 0.

Proof The proof of the claim is immediate from the fact that each subset S ⊆ L corresponds to a
vector in {0, 1}n with Hamming weight |S|.

Expander Graphs: with |L| = n, |R| = m is a (γ, δ) expander if ∀S, S ⊆ L, |S| ≤ δn, |Γ(S)| ≥ γ|S|.
Graph G is c-regular iff the degree of every left vertex is c.

What can we say about the possible values of γ ? Clearly γ ≤ c. By similar arguments, we can rule
out the case that γ > c − 1. Moreover, this is the best that we can rule out because,

Theorem 2 ∀ε, for all sufficiently large c, there is a c-regular graph with expansion (1− ε)c and δ > 0.

δ cannot be too large either. It is easy to see that δn ≤ m
γ .

Now, we give a rough sketch of the (non-constructive) proof that such graphs exist. Take a random
matching on 2cn vertices. Consider cn vertices with no edges between them. Group them into n chunks
each of size c. Group the remaining cn vertices into m chunks (Assume, for convenience, that cn

m is an
integer). This process defines a c-left-regular bipartite graph with |L| = n, |R| = m. We claim is that
this is an expander with a high probability.

We introduce some more notations. Recall that Γ(S) for S ⊆ L stands for {v ∈ R | ∃u ∈ L, (u, v) ∈ E}
and Γodd(S) stands for {v ∈ R | #u ∈ Ss.t(u, v) ∈ E is odd }. Now, define Γunique(S) = {v ∈ R | ∃u ∈
S s.t (u, v) ∈ E}. It is easy to see that Γunique(S) ⊆ Γodd(S) for all S ⊆ L.

Lemma 3 In a (γ, δ)-expander with left-degree c, Γunique(S) ≥ (2γ − c)|S| for all S such that |S| ≤ δn.

Note: Observe that, for this bound to be non-trivial, we need γ > c
2
. As a historical aside, we note

that γ = c
2

was the classical barrier on the expansion.

Theorem 4 If G is a c-regular graph with m left vertices and n right vertices, and it is a (γ, δ) expander
for some γ > c

2
, then G gives a code of rate n−m

n and (relative) distance δ.

Proof of Theorem 4 From Lemma 3, we have that for each S ⊆ L with |S| ≤ δn, Γodd(S) ≥
Γunique(S) > 0. Therefore, no codeword has weight less than δn. Since the code is linear, this implies
that the distance is at least δn. Since the parity check matrix is n × m, the rate is n−m

n .

Proof of Lemma 3 For a set S, write Γ(S) as the disjoint union of sets A and B. i.e, Γ(S) = A ∪ B,
where A = {v ∈ R | #u ∈ S s.t (u, v) ∈ E is 1} and B = {v ∈ R | #u ∈ S s.t (u, v) ∈ E is more than 1}.

|A| + 2|B| ≤ #edges from S to Γ(S) = c|S| (1)

|A| + |B| ≥ γ|S| (2)

where the first equation is due to counting the number of edges between S and Γ(S) in two ways, and
the second equation is a restatement of the expansion property of the graph.

|A| ≥ γ|S| − |B|

≥ γ|S| −
( c|S|−|A|

2

)

|A| ≥ (2γ − c)|S|

If the graph is a sufficiently good expander, this gives us that |A| is close to c|S|. That is, each vertex
on the neighborhood of S has a unique neighbor in S.
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3 Sipser-Spielman Algorithm

In this section, we sketch the decoding algorithm for the expander codes due to Sipser and Spielman.

Algorithm Flip(r)
r is the received vector (of length m). r defines a labeling of the left vertices with 1 or 0. Let H denote
the parity check matrix defined by the expander graph.

1. Label the right vertices as SAT if H · r = 0. Otherwise, label them UNSAT.

2. If ∃v on the left side with more neighbors marked UNSAT than SAT, flip the value of v. Repeat
Step 2.

Note that the number of iterations of the algorithm is at most m, since each vertex on the left side
is flipped at most once. More precisely, if there are τn errors in r, then the number of iterations is at
most cτn.

Claim 5 If τ ≤ δ
2
, we stop at the nearest codeword to r.

Claim 6 Assume γ > 3c
4

and S is any set of size at most δn on the left. Then |Γunique(S)| > c
2
|S|.

Claim 6 is immediate from Lemma 3. We now turn to prove Claim 5.

Proof of Claim 5: At any stage, let S be the set of left vertices “in error”. We know that |S| ≤ δn.
This implies that Γunique(S) > c

2
|S| from Claim 6. Therefore, there is a vertex v ∈ S such that more

than half the edges leaving v enter Γunique(S). This just says that, if there are errors, then there exists
a candidate vertex that could be flipped.

What if |S| becomes ≥ δn at some point in the decoding process ? That is, what if the algorithm flips
many uncorrupted vertices ? We prove that this cannot happen. Assume, for the sake of contradcition,
that at some point |S| = δn. At this point, Γunique(S) > cδn

2
. That is, the number of “unsatisfied con-

straints” is more than cδn
2

. At the beginning, this value was at most cδn
2

, and each step of the algorithm
decreases this.

As proved above, this procedure could correct δ
2

fraction of errors, which is optimal for a code of
minimum distance δ.

We remark that the decoding algorithm given above is linear-time. On the other hand, it is not
clear whether there is an encoding algorithm for this code that runs in linear time. However, Spielman,
building on these ideas, gave a code for which both encoding and decoding are linear-time. This will be
the topic for the next lecture.
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