
6.895 Essential Coding Theory September 29, 2004

Lecture 7

Lecturer: Madhu Sudan Scribe: Kunal Agrawal

1 Overview

1. Generalize the Welch Berlekamp decoding algorithm for other linear codes.

2. Impossibility Bound for error correction.

3. Introduction to list decoding.

2 Abstracting the Welch Berlekamp algorithm

In this section, we generalize the conditions for Welch Berlekamp algorithm so we don’t necessarily
have to use polynomials. The following algorithm can decode linear codes provided they satisfy certain
constraints.

Given code C by its generator matrix Gc ∈ F k∗n, the algorithm can correct e errors provided we can
find

• Error correcting code A given by Ga ∈ F a∗n

• Error correcting code B given by Gb ∈ F b∗n

such that

• A ∗ C ⊆ B 1

• dim(A) ≥ e

• dist(B) ≥ e

• dist(A) + dist(C) ≥ n

Goal

Given the received vector y = (y1, y2, . . . , yn) where yi ∈ F , we want to find c = (c1, c2, . . . , cn) ∈ C such
that number of places where yi 6= ci is at most e.

Algorithm

1. Find error locater vector E ∈ A and N ∈ B s.t.

y ∗ E = N

2. Now use Ei to separate the coordinates of y into correct and incorrect. Let

ci =

{

yi Ei 6= 0
? Ei = 0

3. Do erasure decoding of c.

1∗ operator defines coordinate wise multiplication of two vectors. If a = (a1, . . . an), b = (bi, . . . , bn) are two vectors,
then vector c = a ∗ b if ∀i, ai = bi · ci. In this instance, A,B and C are vector spaces. The above notation means that any
vector in A coordinate wise multiplied by any vector in C gives a vector in B.

7-1

Proof of correctness

Lemma 1 A pair of vectors (E, N) as described in step 1 of the algorithm exists provided

1. y is “close to” some codeword c. That is 4(y, c) ≤ e.

2. dim(A) ≥ e.

3. A ∗ C ⊆ B.

Proof Say that S = {i|yi 6= ci}. We know that |S| ≤ e. Since dim(A) ≥ e

∃E ∈ A − {0} s.t.Ei = 0, ∀i ∈ S

. So we pick this E. We know that E ∗ c = N for some N ∈ B. Thus Ni = Ei · ci. Thus

Ni = Ei.ci = 0 = Ei.yi, ∀i ∈ S

. But yi = ci in all other places. Thus Ni = Ei · yi.

Lemma 2 For any pair (E, N) returned in step 1 of the algorithm, if y is close to c, it is the case that

c ∗ E = N .

Proof We know that y ∗ E = N . Suppose c ∗ E = N ′ 6= N . We also know that N ′, N ∈ B. But

∀i whereyi = ci we haveNi = N ′

i

. But 4(yi, ci) ≤ e. Thus 4(N, N ′) ≤ e. But dist(B) > e. Thus we have a contradiction.

Lemma 3 ∀i where Ei 6= 0 we have ci = yi

Proof

Ni = N ′

i

yi · Ei = ci · Ei

yi = ci where Ei 6= 0

Lemma 4 All the erasures in step 2 can be decoded.

Proof Number of erasures ≤ n − dist(A), but dist(A) + dist(C) ≥ n. Thus number of erasures
≤ dist(A). Thus they can all be corrected.

Hence the above algorithm works for arbitrary linear codes if we can find the codes A and B with
the requisite properties.

7-2

3 Chinese Remainder codes

Chinese remainder codes are number theoretic analog of Reed-Solomon codes. They are based on the
Chinese remainder theorem.

Theorem 5 Chinese Remainder Theorem: Given n relatively prime numbers p1, p2, . . . , pn and

numbers a1, a2, . . . , an, ∃!a, 0 ≤ a ≤ p1 · p2 . . . pn s.t. ∀ia(modpi) = ai.

Thus we can use Chinese remainder theorem for coding. The message space is {a|0 ≤ a ≤
∏

i=1
kpi}

where k < n. The encoding of a is < a(modp1), a(modp2), . . . , a(modpn) >. Any k of these numbers is
enough to reconstruct a.

4 Impossibility Result

The next question we can ask is, can we correct more than (d− 1)/2 errors using RS decoding? We will
prove an impossibility result for it.

Theorem 6 No code can correct more than (d − 1)/2 errors.

Proof Consider two codewords c1 and c2 which differ in exactly d places, say the last d. As shown in
1 we can construct a vector that differs in exactly d/2 places from both of them. Thus the algorithm
cannot know which of the codewords to output as the correct code word.

b1a

d

c1

b1a

d/2 d/2

b2

b2a

d
y

c2

Figure 1: y is at distance d from c1 and c2

5 List Decoding

We saw above that it is not possible to correct more than (d − 1)/2 errors. But in the above example,
the algorithm could have output both the possible code words and then let the receiver decide which
one was correct. This leads us to list decoding.

Definition 7 Code C is (e, l) list decodable if for any pattern of e errors, there exists a list of size l that

includes the transmitted codeword.

More formally we can say that ∀y ∈ F n, |{|Ball(y, e) ∩ C} ≤ l.

Relation ships between the various parameters.

• All (n, k, d) codes are ((d − 1)/2, 1) list decodable and vice versa. This is pretty obvious from the
definition of the distance of the code.

7-3

• All (n, k, d) codes are (n − sqrtn(n − d), poly(n)) list decodable. That is for any (n, k, d) code,
there exists a decoder which can output a relatively short list and correct around n− sqrtn(n − d)
errors. This is very useful when d is relatively large compared to n.

We will now prove the second item in the above list.

Claim 8 Any (n, k, d) code is (n − sqrtn(n − d), poly(n)) list decodable.

Proof Say we received a vector y = (y1, y2, . . . yn and the output list i.e. the list of codewords within
distance e of y are c1, c2, . . . , cm. We can construct an agreement graph with n nodes representing
y1, . . . yn on the left and m nodes representing c1, . . . , cm on the right. There is an edge from yi to cj of
yi = cji

, as shown in 2.

y1

y2

yn

yn-1

c1

c2

si

y2

cm

Figure 2: Agreement graph between the received vector and the list

Let t = n − e and s = n − d. Then every code cj there exist at least t indices i such that (cj)i = yi.
Thus the degree of any right vertex ≥ t, Furthermore if c1 and c2 have yi as a common neighbor, it
means that they agree on that coordinate. But the distance between any two codewords is at least d.
Thus number of common neighbors between any two vertices on the right ≤ n − d = s.

Thus the graph G has no Ks+1,2 (a complete bipartite graph consisting of s + 1 vertices on the left
and 2 vertices on the right). We now bound the number of right vertices such a graph may have when
restricted to having right degree at least t.

Let T denote the total number of edges in the graph and let si be the degree of the ith right vertex
(representing yi). Note that

∑

i si = T and T ≥ tM .
To bound the number of right vertices, we pick two random distinct right vertices, say, j1andj2. Let

Xi be the indicator random variable which is 1 if ith node on the left is a neighbor of both j1 and j2.
Let X be the random variable denoting the number of common neighbors of j1 and j2. Then we have

7-4

Exp[Xi] = Pr[Xi = 1] =

(

si

2

)

(

M

2

)

Exp[X] =
n
∑

i=1

Exp[Xi]

=

∑

i

(

si

2

)

(

M

2

)

=
1

M(M − 1)

(

n
∑

i=1

s2
i −

n
∑

i=1

si

)

=
1

M(M − 1)

(

n
∑

i=1

s2
i − T

)

≥
1

M(M − 1)

(

T 2/n − T
)

(Using the inequality
∑n

i=1
a2

i ≥ (
∑

i ai)
2/n)

=
T (T − n)

nM(M − 1)

≥
tM(tM − n)

nM(M − 1)
=

t2M − nt

nM − n

On the other hand, we are given that j1 and j2 have at most s common neighbors, and thus Exp[X] ≤
s. Thus we have t2M − nt ≤ s(nM − n) which gives M(t2 − sn) ≤ n(t − s) which in turn yields
M ≤ n(t − s)/(t2 − sn) ≤ n2 provided t2 > sn.

Using s = n− d and t = n− e, we conclude that there are at most n2 codewords in any ball of radius
e around any vector y, provided (n − e)2 > n(n − d), or e < n −

√

n(n − d).

7-5

