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1 Algebraic Codes

In this lecture we will study combinatorial properties of several algebraic codes. In particular, we will
introduce:

• Reed-Solomon Codes based on univariate polynomials over finite fields.

• Reed-Muller Codes based on multivariate polynomials over finite fields.

• Hadamard Codes as an interesting special case of Reed Muller Codes.

• The Plotkin bound that shows that Hadamard codes are optimal for their distance.

2 Projection Bound Revisited and Reed Solomon Codes

Recall that the projection bound for an (n, k, d)q code said that d ≤ n − k + 1. This was proved using
the following argument: Project the qk codewords to the first k − 1 coordinates. Since there are only
qk−1 possible k − 1 tuples, there must be two codewords that projected to the same point. At worst,
those two codewords can differ in only the remaining n− (k − 1) places. Thus the minimum distance is
at least n − (k − 1) = n − k + 1.

Althought the argument used above was very loose, this bound is tight! To show this, we will produce
a code C : F

k
q → F

n
q that has the following extremely strong property: ∀S ⊂ [n], |S| = k, the restriction

map C|S : F
k
q → F

k
q is a bijection.

Such a map is in fact well known. It is the polynomial evaluation map based on the following
polynomial interpolation theorem:

Theorem 1 Polynomial Interpolation Theorem: Let F be a field. For any α1, α2, . . . αl+1 ∈ F ,

pairwise distinct, and any y1, y2, . . . , yl+1 ∈ F, ∃ unique polynomial p(x) with degree ≤ l such that

p(αi) = yi, ∀i ∈ [l + 1].

Proof Idea One treats the l + 1 coefficients of the polynomial as unknowns. The l + 1 conditions
p(αi) = yi are linear constraints on them. Show that the linear system has a unique solution by proving
the constraint matrix is invertible(it is a Vandermonde matrix).

Thus if we pick distinct α1, . . . αl+1 ∈ F , we get a bijection:
{Coefficients of p, a degree l polynomial } ⇔ { 〈p(α1), . . . p(αl+1)〉}

As it is, this map is no good: we merely map l + 1-tuples to l + 1-tuples. But a slight variation on
Theorem 1 (which follows directly from it) does the trick.

Theorem 2 Useful Polynomial Interpolation Theorem: Let F be a field. We are given α1, α2, . . . αn ∈
F , pairwise distinct. Then for any distinct i1, i2, . . . il+1 ∈ [n] and any y1, y2, . . . , yl+1 ∈ F, ∃ unique poly-

nomial p(x) with degree ≤ l such that p(αit
) = yi, ∀t ∈ [l + 1].

This motivates the Reed Solomon Code (1960ish) as defined below:

• Given n, q, k, α1, . . . αn, with αi distinct elements of Fq .

• For c = (c0, c1, . . . ck−1), define polynomial pc(x) = c0 + c1x + . . . ck−1x
k−1
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• The code is specified by the encoding function RS : (c0, c1, . . . ck−1) := 〈pc(α1), . . . , pc(αn)〉

If any two polynomials agree on at least k points, by the theorem above they are in fact the same
polynomial. So for any two distinct polynomials, on at least n − (k − 1) points their evaluations differ.
Thus d ≥ n− k + 1. By the projection bound, d = n− k + 1. Observe that this is a linear code because
a linear combination of polynomials of degree at most d is again a polynomial of degree at most d.

A couple of remarks on the alphabet size q. q ≥ n since the αi have to be distinct. Thus we don’t get
binary codes. Further, the field size grows with the code size. Thus one has to take the great asymptotic
parameters of this family of codes with a pinch of salt.

Thus for any k ≤ n ≤ q,with q a prime power, ∃[n, k, n − k + 1]q code.
There has been a school of thought that uses αi = ωi, where ω is a generator of the multiplicative

group F
∗
q . However, today we don’t bother with that.

Any code that meets the projection bound (with d = n − k + 1) is called a Maximum Distance
Separable (MDS) code.

2.1 Linear Codes and their Duals

Recall that for any linear code C, we had 2 matrices associated with it: the k × n generator matrix G
and the n × (n − k)parity check matrix H . Define its dual C⊥ to be the code with HT as the generator
matrix. This is a code with n − k information symbols and n code length. Since GH = 0, we have

HT GT = 0 and thus GT is the parity check matrix for C⊥. Clearly,
(

C⊥
)⊥

= C
It has empirically been found that very often the duals of ”interesting” codes are ”interesting”. This

is why we study duals. For instance, the dual of a Reed Solomon code is a Reed Solomon code. We
will not prove that here. Neither will we prove the other interesting fact that the dual of an MDS code
is MDS. The latter is an easy exercise. Specifically the result is: if C is [n, k, n − k + 1]q, then C⊥ is
[n, n − k, k + 1]q.

3 Multivariate Polynomials and Reed Muller Codes

The large alphabet size of Reed Solomon codes makes it not as nice as we would have liked. There is a
natural generalization of these codes to multivariate polynomials which mitigates this problem to some
extent.

Without further ado, we define the multivariate polynomial evaluation map, the Reed Muller code
(1955-1956):

• Given m, l, q, our code will be over P l
m := {polynomials over Fq in m variables of degree1 l}

• RM : P l
m → F

m
q

• RM(p) =
〈

p(x) : x ∈ F
m
q

〉

, the evaluation of p on each point of F
m
q .

Note that this too is a linear code. To determine the parameters of the code, we need a little bit of
work.

• n = qm

• k =
(

l+m
l

)

when l ≤ q − 1. This is merely the number of monomials of degree ≤ l, and since the
monomials form a basis for P l

m, it is the dimension of our code. If l ≥ q it gets messy because of
identities like xq = x, ∀x ∈ Fq, and thus we will ignore this case forever.

1The degree of a multivariate polynomial
P

i1,i2,...im
ai1i2...imxi1

1
xi2
2

. . . xim
m is defined to be the largest d for which

there is a non-zero ai1i2...im with i1 + i2 + . . . im = d.
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• d =
(

1 − l
q

)

n, because of the following result which will be proved later: Any non-zero polynomial

on F
m
q of degree ≤ l is zero on at most l

q qm points. We already know this result for m = 1 (and

indeed used it to prove the distance of the RS code).

• q = q

Let us just pick some parameters arbitrarily to get a feel for the kinds of codes that we get.

• m = 2

• l = 1
3q

• So n = q2, k =
( 1

3
q+2
2

)

≈ 1
18 q2, d = 2

3n = 2
3q2

So ∃[q2, 1
18q2, 2

3q2]q codes (note the constant rate and constant relative distance). Here q ≈ √
n, which is

already much better than the RS code. With a slightly different choice of parameters, for any constant
m, there is a family of [qm, 1

(2m)m qm, 1
2qm]q codes with good distance and q ≈ n1/m.

4 The Plotkin Bound and Hadamard Codes

Let us see what kind of binary RM codes exist. If we put q = 2, since l ≤ q − 1, we are forced to put
l = 1. Thus we are dealing with linear multivariate polynomials over F2. The only parameter we can
vary is m. We get n = 2m, k =

(

m+1
1

)

= m+1 and d = 1/2 ·2m. Now the rate of this code is horrendous,
m + 1 bits get encoded as 2m bits. However, we get great relative distance (= 1/2). This code is called
the Hadamard code.

Last lecture we saw the unnerving phenomenon that there cannot exist a binary code with more than
2 codewords with relative distance > 2/3 2 The Plotkin bound extends this idea to codes with relative
distance 1/2 and shows that the Hadamard codes are optimal for this distance.

Theorem 3 Plotkin Bound: If there exists a (n, k, n/2)2 code, then k ≤ log2(2n).

Sketch of Proof Suppose the code consists of words c1, c2, . . . cK ∈ 0, 1n. Create vectors v1, v2 . . . vK ∈
1,−1n by (vi)j = (−1)(ci)j . Now, the condition that ci and cj have distance at least 1/2 is equivalent to
the condition that vi and vj have inner product 〈vi, vj〉 ≤ 0. As we will see tomorrow, in n dimensions,
there can be at most 2n vectors that have this property. Thus K ≤ 2n and k = log2 K ≤ log2(2n).

5 Notes

Reed Solomon codes are ubiquitous in computer hardware today. The large alphabet size is not much
of a problem since for practical applications, something like a n = 256 code is about as large as we want
to handle, thus not requiring a field size of more than 256 elements (conveniently chosen so that 1 byte
can handle it all). By judicious choice of interleaving strategy, data on a disk can be spread out so that
any local catastrophe (spatially close bits are destroyed) only affects a few bytes of lots of codewords
(all of which can be recovered) as opposed to many bytes of a single codeword.

2To recap, let x, y, z be codewords in a code with relative distance 2/3 + ε. Look at x − y and x − z. They are both of

relative hamming weight 2/3 + ε. Thus they agree in at least 1/3 + 2ε of the positions. So the relative distance between y
and z is at most 2/3 − 2ε.
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5.1 Proof of the statement about zeroes of a multivariate polynomial

We want to show that for a degree l polynomial p in m variables over Fq, with S ⊂ F

Prα∈R§m [p(α) = 0] ≤ l/q

We already know that for a univariate polynomial of degree l, the number of 0s in a set S can be no
more than l/|S|. We proceed by induction, assuming the result for all polynomials of degree l in < m
variables.

Write the polynomial p(x1, . . . , xm) =
∑l1

i=0 pi(x1, . . . , xm−1)x
i
m, with pl1(x1, . . . , xm−1) not identi-

cally 0. Observe that degree pl1 ≤ l − l1. Then

Prx∈RSm [p(x) = 0] ≤ Prx∈RSm [p(x) = 0|pl1(x1, . . . xm−1) 6= 0] + Prx∈RSm [pl1(x1, . . . xm−1) = 0]

≤ l−l1
|S| + l1

|S| = l
|S| .

Note that this also proves (by putting q = 2, l = 1, S = F2) the fact that the inner product of a
nonzero vector with a purely random vector gives a purely random bit. This result shows up in many
other contexts with very different proofs.
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