Today

- Decoding Reed-Solomon Codes: The
- Abstracting the decoding algorithm.

Welch-Berlekamp algorithm.

Decoding Algebraic-Geometry Codes.

Problem Statement

Given Distinct points $\langle (\alpha_i, r_i) \in \mathbb{F} \times \mathbb{F} \rangle_{i=1}^n$, and parameter k

Task Compute (coefficients of) polynomial p of degree at most k such that $p(\alpha_i) = r_i$ for at least (n+k)/2 values of $i \in [n]$.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Key concept: Error-locator Polynomial

- Given $\langle (\alpha_i, r_i) \rangle_i$ s.t. $\exists p$ of deg. k agreeing with seq. on (n+k)/2 points, a polynomial E(x) is an error-locating polynomial if:
 - $-p(\alpha_i) \neq r_i \text{ implies } E(\alpha_i = 0).$
 - $-\ E$ is not zero "too often" (at least k+1 non-zeroes).
- Simple Fact: Given an error-locator polynomial E, can compute p efficiently.
- Simple fact: Such an E of degree e (# errors) exists $E(x) = \prod_{i|r_i \neq p(\alpha_i)} (x \alpha_i)$.
- Question: How to find E?
- Grammatical aside: "Key" is an adjective, not a noun.

Key equation & Algorithm

- Grammatical aside: "Key" is an adjective, not a noun.
- Fix E of degree e and p and let N(x) = p(x).E(x).
- Then (the key equation)

$$\forall i, \quad N(\alpha_i) (= p(\alpha_i) E(\alpha_i)) = r_i E(\alpha_i).$$

- Algorithm:
 - 1. Find (N, E) with $(N, E) \neq (0, 0)$ and $\deg(N) \leq k + e$ and $\deg(E) \leq e$ satisfying key equation.

- 2. Output N/E if it is a polynomial satisfying the right conditions, else say none exists.
- Over time, key equation became Key equation.

Analysis

- Why can we find such a pair (N, E)?
 - Substitute unknowns for coefficients.
 - Solve linear system!
- Why does a solution exist? We just argued it!
- Why is it unique?
 - It is NOT!
 - But any solution will do.

© Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

5

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Analysis (contd.)

- Claim: If (N,E) and (M,F) are both solutions to Step 1, then $N/E \equiv M/F$.
- Proof:
 - $\forall i, \quad r_i N(\alpha_i) F(\alpha_i) = r_i M(\alpha_i) E(\alpha_i).$
 - If $r_i \neq 0$ then can cancel from both sides above to get $N(\alpha_i)F(\alpha_i) = M(\alpha_i)E(\alpha_i)$.
 - If $r_i = 0$ then $N(\alpha_i)F(\alpha_i) = M(\alpha_i)E(\alpha_i) = 0$.
 - So for n values, we have $N \cdot F = M \cdot E$.
 - If n > k + 2e then $N/E \equiv M/F$.

Summary

- Gives polytime algorithm for decoding up to error-correction capacity of code.
- Highly non-trivial result no reason to exist!
- Algebra often has non-trivial solutions to seemingly hard problems. Have to be very careful when basing cryptography on it.

Abstract decoding algorithm

- How much of the prev. algorithm is linear algebra? And how much polynomial arithmetic?
- Investigated by [Pellikaan, Kotter, Duursma 88].
- Surprisingly little polynomial arithmetic.

Abstract decoding (contd.)

Fix a code C = [n, k, d].

Defn: $(\mathcal{Y}, \mathcal{Z})$ are e-error-correcting pair for \mathcal{C} if the following hold:

- \bullet \mathcal{Y} are linear codes.
- $\mathcal{Y} = [n, e+1, n-d+1]$ code.
- $\mathcal{Z} = [n, ?, e+1]$ code.
- $\mathcal{Y} * \mathcal{C} \subset \mathcal{Z}$, where

 $A*B = \{a*b | a \in A, b \in B\}$ and a*b denotes coordinatewise product.

Thm: If C has a e-error-correcting pair then it has an e-error-correcting algorithm.

 \bigcirc Madhu Sudan, Fall 2002. Essential Coding Theory: MIT 6.896

(

11

©Madhu Sudan, Fall 2002: Essential Coding Theory: MIT 6.896

Algorithm

Given: $r = \langle r_1, \ldots, r_n \rangle \in \mathbb{F}_q^n$.

- Find $(y \in \mathcal{Y}, z \in \mathcal{Z})$ s.t.
 - $-y \neq 0.$
 - y * r = z.
- Set $c_i = r_i$ if $y_i \neq 0$ and erasure otherwise.
- Erasure decode for c.

Proof steps

- 1. Such a pair (y, z) exists:
 - Set y_i to zero whenever $c_i \neq r_i$.
 - Find non-zero $y \in \mathcal{Y}$ subject to above. (Exists by dim. of \mathcal{Y} .)
 - Set z = c * y.
- 2. Pair can be found (linear system).
- 3. For any (y,z) found by alg. and any c s.t. $\Delta(c,r) \leq e$, we have y*c=z. (Follows from distance of \mathcal{Z} .)
- 4. Any pair y, z has at most one c s.t. y * c = z. (Follows from distance of \mathcal{Y} .)

Recall: AG codes

Application: AG codes

- ullet Code determined by subset of n points in \mathbb{F}_q^m .
- Codewords/Messages: Multivariate polynomials.
 - But weight determined by "order" not degree!
- Order axioms
 - $-\operatorname{ord}(f+g) \le \max\{\operatorname{ord}(f),\operatorname{ord}(g)\}.$
 - $-\operatorname{ord}(f \cdot g) = \operatorname{ord}(f) \cdot \operatorname{ord}(g).$
 - Exist functions of every order except $g \leq$ $n/(\sqrt{q}-1)$.

- Recall order axioms for algebraic-geometry codes. (Product rule, and # zeroes.)
- C = functions of order < k.
- $\mathcal{Y} = \text{functions of order} < (n k + g)/2.$
- $\mathcal{Z} = \text{functions of order} < (n+k+g)/2.$
- Gives (n-k-g)/2-error-correcting pair.
- ullet Thus every AG code $\mathcal C$ has a decoding alg. going up to $(d(\mathcal{C})-g)/2$ errors.