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1 Overview

In this lecture, we will see some complexity results for coding problems - known hardness
results and some open questions.

• Hardness of the Nearest Codeword Problem (NCP)

• Approximation variants

• Decoding with preprocessing

• Decoding with relatively near codeword

• Minimum distance problem

2 Nearest Codeword Problem

The problem of finding out the nearest codeword (or maximum likelihood decoding) to a
given received vector has been of crucial importance in the theory of error-correcting codes.
Since in the general case, where the code is described by an encoding circuit, the problem
of finiding a message corresponding to a given codeword is already hard so we might as well
restrict our attention only to the linear codes. So given the code by its generator matrix
and a received vector, find out a codeword nearest to it. We will formalize this as follows -

Definition 1 (Nearest Codeword Problem - NCP) Given a code with generator ma-
trix G and received vector r, find x that minimizes ∆(xG, r).

How hard is it to solve NCP ? We will show that NCP is hard even for the special case
when r = 1̄. This is done by a reduction from Max Cut (which is a well-known NP-hard
problem).

Definition 2 (Max Cut Problem) Given graph H = (V,E) find S ⊆ V such that, the
number of edges between S and S̄ is maximum.

The reduction goes as follows - Let G be the incidence matrix of a graph H = (V,E)
with |V | = k and |E| = n. So our message x corresponds to the subset of V specified by
the 1’s in it and codewords correspond to those edges e which give 1 after multiplication
by x. i.e. both the 1’s in e cannot be in S or S̄. So e must be a crossing edge. Thus the
codewords correspond to cuts and finding max cut is equivalent to finding the maximum
weight codeword (meaning, nearest to 1̄).

20-1



3 Approximation variants of NCP

There are three important variants of the approximation problems. For a given instance
(G, r) we will define τ = minx{∆(xG, r)}, and α > 1 be our approximation parameter.

Definition 3 (Search question): Find x′ such that τ ≤ ∆(x′G, r) ≤ α · τ .

Definition 4 (Estimation question): Estimate t such that τ ≤ t ≤ α · τ .

Definition 5 (Gap decision problem):(“promise” problem) Given (G, r, t) with the promise
that τ /∈ [t, αt] decide if τ ≤ t or not.

And it’s easy to observe that a solution to search problem gives a solution to estimation
problem, and a solution to estimation problem gives a solution to Gap decision problem.
Also as α becomes closer and closer to 1 the problems get harder. Analogous definitions
can be made for the maximization versions of these problems.

4 Hardness of approximating NCP

A critical question would be - is it hard even to find an approximately nearest codeword ?
We know that Max Cut is hard to approximate to within some α < 1. So we can use

this fact to show the hardness for NCP . Elementary probability (first moment method)
gives that every graph has at least a cut of size |E|/2, where |E| is the number of edges.
And the reduction that we used for showing the NCP is NP-hard says that finding a Max
Cut of size x corresponds to getting a codeword of weight x. i.e. a codeword within distance
n − x from 1̄. But since we know that x ≥ n/2. This alongwith an β-approximation to
NCP within n − x, n − x ≤ n − x′ ≤ β(n − x), gives that 1

(2−β)x ≤ x′ ≤ x. And thus a
α = 1/(2−β)-approximation to Max Cut. And α→ 1 as β → 1. But we already know that
Max Cut cannot be approximated within α < 1 for some α, which implies the corresponding
hardness result for NCP as -

Theorem 6 NCP is hard to approximate to within some β > 1.

Moreover, we can prove something stronger as this problem has a self-improving prop-
erty.

Theorem 7 β-approximation to NCP is hard implies that β2-approximation is also hard.
And using this repetitively we get, any constant approximation to NCP is hard.

Proof The proof involves a clever construction - given G generator matrix of a code of
length n, we can construct a “product” G(2) generator matrix of a code of length n2 such
that G has a codeword of weight n− w iff G(2) has a codeword of weight n2 − w2.

A codewords of G(2) is an n×n matrix with columns labelled by a codeword of G. Each
column is a codeword of G or its complement according to the label 0 or 1, respectively. To
our surprise, this happens to be a linear code.

So if G has a code of weight n−w then we can cosider the codeword in G(2) that has 1̄
in all the columns labelled by 1’s and the n−w weight code in G in all the columns labelled
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by 0’s. And the labelling also corresponds to the n−w weight codeword of G. This gives a
codeword of in G(2) of weight n2 − w2. And that’s the maximum you can do to stuff your
matrix with more and more 1’s.

This clearly implies that if there is a β2-approximation algorithm for the code G(2) then
it should give a β-approximation for code G. And thus β-approximation hardness for G
translates into β2-approximation hardness, too.

5 Criticism

There has been a lot of criticism on this which gives rise to the following problems -

• Code shouldn’t be part of the input and we should be given a lot of preprocessing
time to devise the decoding algorithm.

• How do these results relate to the error-correction property ? To make sense, we
should be trying to correct less errors than the minimum distance of the code.

• The codes we saw here had a very low-density generator matrix as it was corresponding
to the incidence matrix of a graph. But we want hardness results for better codes.
e.g. Reed-Solomon codes, algebraic geometry codes, LDPC codes, Turbo codes (any
of your favourite codes).

We will analyze some results that try to address these questions.

6 More hardness results addressing the criticism

6.1 Hardness of decoding a fixed family of codes [Bruck-Naor]

The first criticism regarding sparse generator matrix was addressed by Bruck-Naor [1] and
the idea was to “inject” the generator of the code into received vector, while fixing the code.
Let G be the incidence matrix of a graph. For every pair of vertices (u, v), have twin-pair

of columns. So such a code C has a generator matrix with 2
(
k
a

)
columns. Now suppose

that we have code B and received vector r as an instance of NCP. Construct a new received
vector as follows: if edge (u, v) is in G then duplicate the entry of r in the corresponding
coordinate of r′, and otherwise put 0, 1.

Now note that, ∆(xC, r′) = N/2− n− 2∆(xB, r) where N and n are the block lengths
of C and B, respectively. So the minimum distances are related and we cannot compute
NCP exactly for the code C.

This method also works when the generator matrix is a-sparse (in fact, more generally).
Hardness of approximating in this setting is studied in Feige-Micciancio [2].
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6.2 Decoding codes upto min distance [Dumer-Micciancio-Sudan]

This addressed the other criticism regarding hardness results for asymptotically good codes.
Dumer-Micciancio-Sudan [3] show that we can “boost” the distance of the code without
altering the problem too much. This was shown by showing a hardness result for a version
of Gap Decision Problem for the minimum distance.

Suppose that finding the nearest codeword to code generated by A is hard to approx-
imate (to within factor of 100, say). Then we specifically have A, r, d such that telling if
τ > d or τ ≤ d/100 with high probability is hard. The trick is to attach to A a generator
matrix B of a code of distance d, and getting an appropriate r′.

Dumer-Micciancio-Sudan [3] show that decoding codes of minimum distance d for upto
less than d errors is NP-hard.

7 Open questions

All these still raise a few more open questions -

• Can you solve NCP is polytime for some asymptotically good family of codes ? Reed-
Solomon ? or your favourite code ?

• Does there exist a single decoding algorithm decoding all codes upto half the minimum
distance ?

• Does there exist an algorithm giving a lower bound for minimum distance which
guarantees that if the relative distance is 1− 1

q − ε then the lower bound given by the
algorithm is at least 1− 1

q − ε
2 ?
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