
6.897 Algorithmic Introduction to Coding Theory October 16, 2001

Lecture 11
Lecturer: Madhu Sudan Scribe: Rui Fan

1 Overview

• Decoding RS codes.

• Abstract decoding algorithm.

2 Decoding Reed-Solomon codes

So far we’ve seen how to encode messages with the RS code. Recall that the RS encoding of a message
m = 〈m0, . . . ,mk−1〉 is 〈p(α1), . . . , p(αn)〉. Here, mi ∈ Fq, k ≤ n ≤ q, and p(x) =

∑k−1
i=0 mix

i. The
decoding problem for RS codes can be stated as follows:

Suppose we are given distinct values α1, . . . , αn, αi ∈ Fq. Let r1, . . . , rn be our received vector,
ri ∈ Fq. Let k and e be parameters, where e is ≥ the number of errors which occurred in the received
vector. Our goal is to find a polynomial p of degree ≤ k, such that p(αi) 6= ri for at most e values of i.

Berlekamp and Welch gave an algorithm in 1986 which finds a unique p for the above problem if p
exists, and e ≤ (n− k)/2. Interestingly, finding the actual solution is the only way we know of to prove
that a solution exists.

2.1 Error-locating polynomial

The BK algorithm starts by defining an error-locating polynomial. This is a polynomial which is as-
sociated with the inputs, but which we don’t (yet) know how to find. Nevertheless, it has some nice
properties which eventually lead to a decoding algorithm.

Definition 1 Let e, k be some parameters. Let α1, . . . , αn and r1, . . . , rn be such that there exists a
polynomial p of degree ≤ k such that p(αi) 6= ri for ≤ e values of i. E(x) is an error-locating polynomial
for the above inputs if we have

1. E(αi) = 0 if p(αi) 6= ri.

2. deg(E) ≤ n− k − 1, and E 6= 0.

Note that given E, we can compute p, by finding the i’s for which E(αi) = 0, replacing ri by ? for
those i’s, and doing erasure decoding on the resulting vector of ri’s. This works because there are at
most n− k − 1 < d− 1 i’s for which E(αi) = 0. We now list some properties of E.

1. E is nonzero, and has small degree.

2. E · p is a small degree polynomial.

3. ∀i : (ri − p(αi))E(αi) = 0

Property 3 holds because either ri = p(αi), or ri 6= p(αi) but E(αi) = 0.
Define N(x) = E(x) ·p(x). By property 3, N(αi) = E(αi)p(αi) = riE(αi), for all i. We’re now ready

for the decoding algorithm.

11-1



2.2 Berlekamp-Welch decoding algorithm

Input: α1, . . . , αn, r1, . . . , rn, with αi, ri ∈ Fq. k, and e ≤ (n−k)/2. Step 1. Find polynomials N(x) 6= 0,
E(x) 6= 0 such that

1. N(αi) = riE(αi) for all i.

2. deg(N) ≤ e+ k.

3. deg(E) ≤ e.

Step 2. Output N(x)/E(x) if E|N . Otherwise output “no such polynomial”.

2.2.1 Correctness

To prove this algorithm is correct, we need to prove the following 3 things:

1. There exists N,E satisfying the conditions of step 1.

2. The algorithm can be performed efficiently.

3. The solution it outputs is unique.

Proof of 1. Define E(x) =
∏
i:p(αi) 6=ri(x − αi). If there are ≤ e errors, which is the only case for

which the algorithm needs to work correctly, then deg(E) ≤ e. Now define N(x) = E(x)p(x). We saw
earlier that for such an N , N(αi) = riE(αi) for all i.

Proof of 2. We first note that we can efficiently compute the polynomial division in step 2. Step 1,
finding N(αi) = riE(αi) for all i, is solving a homogeneous linear system of n equations

e+k∑
j=0

Njα
j
i = ri

e∑
j=0

Ejα
j
i

in the unknowns N0, . . . , Ne+k, E0, . . . , Ee.We already saw that a solution to this system exists, in the
proof of property 1. The straightforward way of solving this system works in time O(n3). Welch and
Berlekamp gave an iterative algorithm which makes t passes over the input, where t is the number of
errors, and has a total running time of O(t ·n). The fastest known algorithm, based on the Fast Fourier
Transform, takes time O(npolylogn).

Proof of 3. Assume that we have pairs (N,E), and (N ′, E′) which both satisfy the conditions of step
1. We’ll show that N

E = N ′

E′ , so that the solution output by the algorithm is unique. We’ll do this by
cross-multiplying and showing that N · E′ = N ′ · E. We consider 2 cases.

Case 1. ri = 0: Then N(αi) = N ′(αi) = 0, so we’re done.
Case 2. ri 6= 0. Then N(αi)N ′(αi) = riE(αi)N ′(αi) = N(αi)riE′(αi). Dividing through by ri, we

get that E(αi)N ′(αi) = N(αi)E′(αi)∀i ∈ [n]. But since N · E′ and N ′ · E have degree ≤ 2e + k, while
n > 2e + k, this implies that N · E′ = N ′ · E as polynomials. Thus, N

E = N ′

E′ , and the output of the
algorithm is unique.

3 Abstract decoding procedure

It turns out that the BK algorithm represents a style of decoding which is not unique to RS codes. We
now describe some work by Pellikaan, Kötter and Duursma which abstracts the BK algorithm, so that
it can be used to decode other codes, such as algebraic-geometry codes. First we give some definitions.

Definition 2 Let u, v ∈ Fnq , and A,B ⊆ F
n
q . Define u ? v = (u1v1, . . . , unvn), and define A ? B =

{a ? b | a ∈ A, b ∈ B}.

11-2



The idea of the abstract decoding procedure is that given an e-error correcting code C which we
want to decode, we construct an error-locator code E, such that E ?C is contained in some “nice” linear
code N . By “nice”, we mean that N has large distance. Specifically, we want codes E and N to have
the following properties:

1. dim(E) > e.

2. E ? C ⊆ N .

3. dist(N) > e.

4. dist(N) > n−dist(E).

Then, given a received vector (r1, . . . , rn), such that there exists a c ∈ C, c = (c1, . . . , cn) with
∆(r, c) ≤ e, we want an algorithm to find c.

3.1 Abstract decoding algorithm

The abstract decoding algorithm parallels the concrete BK decoding algorithm for RS codes. This
algorithm works correctly if there are ≤ e errors in r.

Input: A vector r ∈ Fnq which we want to decode to a codeword in C. Also, codes E and N with the
properties described in the last section.

Step 1. Find a ∈ E and b ∈ N , (a, b) 6= (0, 0), such that a ? r = b, and ai = 0 if ri 6= ci.
Step 2. For any i with ai = 0, set ri =?. Then do erasure decoding on the resulting vector r to find

c. If this does not result in a codeword, output “no such codeword”.

3.1.1 Correctness

As in the proof of the BK decoding algorithm, we need to argue 3 conditions.

1. A solution (a, b) exists.

2. The algorithm is efficient.

3. The output c is unique.

Proof of 1. We first show that there exists a ∈ E, a 6= 0, such that ai = 0 if ri 6= ci. We assume that
≤ e errors occurred, since the algorithm only needs to work corectly in this case. Then ai = 0 for at
most e values of i. This places at most e linear constraints on a. But since dim(E) > e, we know that
there is a nonzero vector a ∈ E satisfying these constraints. Now, define b = a ? c. Clearly b ∈ N . We
also have bi = airi. This is because either we have ri = ci, in which case bi = aici = airi, or, we have
ri 6= ci, but then ai = 0 and aici = airi = 0. Thus, there does exist (a, b) 6= (0, 0) with the properties
required by step 1.

Proof of 2. To see that step 1 can be performed efficiently, note that E and N are both linear spaces.
Thus the requirement that a ∈ E, b ∈ N are linear constraints. Also, the requirement that a ? r = b is
linear, since it just means airi = bi. Therefore, finding the required a and b is solving a homogeneous
linear system, which can be done efficiently. Also, step 2 can be done efficiently, since we saw that doing
erasure decoding is also solving a linear system. Thus, the algorithm is efficient.

Proof of 3. We show that the output c is unique with 2 lemmas.
Lemma 1 For any (a, b) satisfying the conditions of step 1, we hav a ? c = b.
Proof We know that a ? r = b. Suppose a ? c = b′. We show that b = b′. Since b′i = aici, and

bi = airi, we have bi 6= b′i only if ci 6= ri. Since there are ≤ e errors, there are at most e such indices, so
∆(b, b′) ≤ e. But b, b′ ∈ N , and dist(N) > e. Thus, b = b′.

Lemma 2 There is a unique c such that a ? c = b.

11-3



Proof Suppose that a ? c′ = b. We need to show that c′ = c. We have a ? c = a ? c′. Also, since
a ∈ E, ai 6= 0 for at least dist(E) i’s. This means c and c′ agree on at least dist(E) coordinates, and so
∆(c, c′) < n−dist(E). But c, c′ ∈ C, and dist(C) > n−dist(E). Thus, c = c′.

Thus, the abstract decoding algorithm outputs a unique c. It’s not easy to find E and N which
satisfy the requirements of the abstract decoding algorithm. But such codes do exist, and next time,
we’ll see an application of the abstract decoding algorithm.

4 References

Matt Lepinski’s notes for lecture 11 of the 2001 version of this course.

11-4


