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Lecture 5
Lecturer: Madhu Sudan Scribe: Jonathan Herzog

1 Overview

Existence of asymptotically good codes

Gilbert codes / Random codes

Vashamov codes / Random linear codes

Bounds

Wozencraft ensemble of codes

2 Random codes

So far, we have seen a number of codes, but we would like an asymptotically good one. To review, an
asymptotically good code is a family of codes, indexed by the block length (n) where:

e £>R>0and

S

>6>0

and R and ¢ are both constants. That is, we would like a code with a rate (R) and a minimum distance
(6) constant relative to the block length. Can we show that such codes exist? Yes, by examining random
codes:

Theorem 1 (Gilbert) There exists a code with a constant 6 and a constant rate R > 1 — Hs(0).

Proof Consider a random code with block size n and minimum distance d, constructed according to
the following algorithm:

1. Let S « {0,1}".
2. Let C « 0.
3. While S # 0, do:

e Pick z randomly (uniformly) from S.
o Let C + CU{z}
e Let S+ S\ Ball(z,d—1)

(Here, Ball(z,d—1) = {y € S|A(z,y) < d — 1}, and Voly(n,d—1) is the number of points in Ball(z,d—
1).) Let C be a code produced by the above algorithm. How large will C' be? Each time you add a
codeword, you remove at most Voly(n,d — 1) elements from S:

on
IC| > Vola(n,d—1)
If § = 4 for a family of codes, then Vols(n,d — 1) ~ 2H2(9n_ In which case
|C| > on(1—Hz(9))
If |C| = 2%, then 2% > 27(1-H2(9) or k > n(1 — Ho(5)). Hence, there exists a code C so that
R>1-H(5).
|
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Figure 1: Bounds on R and ¢
3 Bounds

How does this relate to the Hamming Bound? The Hamming bound tells us that if C' is a code with
distance d, then on
1= Vola(n, 1)

(In the asymptotic case, R < 1 — HQ(%).) In other words, we know we can achieve a code with
Vola(n,d — 1) in the denominator, and the Hamming bound tells us that we can do no better than
Vola(n, %) in the denominator. Halving the radius reduces the volume of the sphere dramatically,
leading to a large gap between this bound and the bound from the Gilbert proof. Figure 1 plots these
bounds as a function of R and §. The Gilbert proof above shows that there are codes on and to the left
of the Gilbert bound. (Any code on the Gilbert bound which is not also on an axis is an asymptotically
good code.) Hamming showed that there do not exist codes to the right of the Hamming bound. The
area in between is still open.

4 Random Linear Codes

Theorem 2 (Vashamov) Suppose that 2F — 1 < Wn,d—n' Then there exists a linear code C' with a

minimum distance d and so that on

> “
€12 Vola(n,d — 1)

Proof Pick G € {0,1}**" at random. Then let C' = {xG|:z: € {0, l}k}. To show that C has minimum
distance d, it suffices to show that wt(zG) > d for all = # 0.



Fix an x # 0. Then
l d—1
Py [wt(zG) < d] = %

Hence, via union bound:

(2F — 1) Vola(n,d — 1)
an

%r [Fz # 0 s.t. wt(2G) < d] =
< 1

Hence, there exists a G so that wt(zG) < d) for all non-zero z, and so C is a linear code with minimum
distance at least d.

5 Bounds, revisted

Can we do better than the Gilbert-Vashamov bound for, at least for specific n, k and d? Yes, we've
already seen codes that do better. However, asymptotically, they exist on the azises of the diagram in
Figure 1.

Hamming codes If we let d = 3, then the Gilbert-Vashamov construction gives a lower bound on the
number of codewords as:

2" A A
C|> = RO |—
€= Vola(n,2)  1+n+ (%) <n2)
We know that Hamming codes actually do better than this: |C| = Tf—:l Asymptotically, however,
d is constant and so & goes to 0 as n gets large. Hence, Hamming codes are not asymptotically

good.

Hadamard codes With these codes, n = 2* and d = 5. So asymptotically, R = % goes to 0 as n gets
large and Hadamard codes are not asymptotically good. However,

Vola(n, g) ~2n L
and hence the Gilbert-Vashamov bound gives
2n
Cl>—— =2
€12 Volz(n, 3)
and we know that Hadamard codes do much better than this.

BCH codes If you fix d and let n — oo, then BCH codes have © ( 3’11) codewords. The Gilbert-

n 2
Vashammov bound gives that it will have at least © (%) codewords, a very loose bound.

Reed-Solomon Codes In a g-ary construction, the greedy Gilbert-Vashamov bound implies that there

are codes such that
k>n—d—@ (L> .
logq

Reed-Solomon codes, it turns out, are such that
k>n—-d-1,

a much better result. (Also, there are codes from algebraic geometry such that
n
k>n—d-0 (—) ,
Vi

Hence, is the Gilbert-Vashamov result tight? Madhu doesn’t think so. However, all the “counterex-
amples” above lie on the R- or §-axis of Figure 1. Hence, they are not asymptotically good codes, and
are not direct counterexamples to the bound.

also a better result.)



6 Wozencraft Ensamble of Codes

We would like to make the Gilbert-Vashamov “constructions” more deterministic, if possible. So much,
in fact, that we are willing to accept an exponential (2°(")-time) algorithm to create a good linear code.
As a first step to that end, we consider Wozencraft ensambles of linear codes:

Definition 3 The space {0,1}" is packed with linear codes Cy, Cs, ...Cy (each having 2* elements) if:
1. For alli # j, C;NC; = {0}, and
2. |UJ; C; ={0,1}".

Note that if C1, Cs, ...Cy pack {0,1}", then t = %:_;%

Theorem 4 If Cy, Ca, ...Cy pack {0,1}" and et > Vola(n,d — 1), then more than an (1 — €) fraction
of the C;’s have distance d.

Proof For all C; of distance A(C;) < d, there exists a representative v; € C; in the set Ball(0,d—1)\
{0}. If i # j, then v; # v;. Hence, there can be only |Ball(0,d — 1)| — 1 codes with a representative that
close to 0, and so only that many codes of distance less than d. Since et > Vola(n,d — 1), the number
of codes with a representative with in d of 0 must be less than et. Hence, t — et = (1 — €)t of the codes
must have a distance larger than d. B

Do packings exist? Let’s build one. We need

-1
T2k 1

codes. So, we first need 2¥ — 1 to divide 2 — 1, which happens if k divides n.
Now, to construct a packing, let n = ck, and construct Cy, Ca, ...C; as follows:

e Work over the field F%, interpreted as Fox. Call this field K for convenience.

e In this interpretation, a message (usually an element of F%) will be a single field element of K.

e The space {0,1}" can now be viewed as F, = K°. Hence, an codeword is now c field elements.
Consider vectors (a1, az,...a.) € K€ such that

1. a; = 0 for not all 4, and

2. for the first ¢ so that a; #0, a; =1

How many such vectors are there? If o; is the first non-zero entry, it must be 1 and there are (2¥)c~!
ways to chose the ¢ — 1 remaining entries. If as is the first non-zero entry, it must be 1 and there are
(2%)¢=2 ways to chose the ¢ — 2 remaining entries. So, the number of such vectors is:

_ _ 2k)¢ — 1 ck _ n_
(27 4 (@) (o)1 B DL 2ol 2ol

= =t.
2k —1 2k — 1 2k —1

Hence, we can associate each code with such a vector.
So, let Céal asya) ST (a1z,azz, . .. acz) be a function from message to codeword. Then we can
let the code

Clar,az,a0) = {Cfal,aQ,...ac)(xﬂm € K}

Have we packed the space K¢ with these codes? To show that, we will give a function from K¢\ {0} to
codes. Giveny = (y1,y2 -..y.) € K¢, we can compute the index (aq, as,...a.) of the code that contains
it via:

e Suppose y; is the first non-zero entry in y. Then it must be that oy =0, aa = 0,...a;_1 = 0.
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e Since the first non-zero element of (a1, as,...a.) must be 1, we know that a; = 1 and = = y;.

. — Yi+1
® Q1 = T

. — Yi+2 .
® ajig =L ,and so on until
o o =1L,

Hence, each element of K¢\ {0} can belong to exactly one code, and so the codes pack the space K°.
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