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1 Introduction

In this lecture, we consider classical scenarios in the theory of communication, in which
a sender (which we will refer to as the source) wants to transmit a piece of information,
which we will represent as a binary string, to a receiver. The transmission is to be con-
ducted through a channel, which has certain properties depending on the scenario we are
considering. The natural goal is to set up a scheme that requires transmission of as little
data as possible and that minimizes the chance of error.

The first situation we deal with concerns the noiseless channel. In this case there is no
need to account for transmission errors, so we can concentrate on minimizing the number
of bits that have to be sent to the receiver. In the second scenario we have a noisy channel,
which alters every bit that is transmitted through it with a small probability p. We set a
condition that the probability of the receiver getting an incorrect message is at most ε, and
we show the existence of a certain transmission scheme that satisfies the condition, and we
also show that this scheme has the best possible efficiency in terms of the amount of data
being transmitted.

2 Noiseless Channel

Suppose that the source produces a sequence of n independent bits such that each bit
has value 0 with probability 1 − p and value 1 with probability p. We use the notation
x ← BSCp to indicate that a sequence (string) x is generated according to this principle.
Since we would like to minimize the number of bits that we send to the receiver, it is
reasonable for the sender to encode the message using an encoding function E, then send
the encoded message, so that the receiver can decode the message using a decoding function
D. Formally, we need to construct a pair of functions

E : {0, 1}k → {0, 1}∗

D : {0, 1}∗ → {0, 1}n

such that D(E(x)) = x for all x ∈ {0, 1}n. Our goal is to minimize the value of the expected
size Expx←BSCp

[|E(x)|] of the encoded message.
We define a distribution on a finite set S to be a function D : S → [0, 1] such that∑
x∈S D(x) = 1. The function

H(D) = −
∑
x∈S
D(x) logD(x)
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is the entropy function. The binary entropy function is defined as follows:

H2(p) = −p log p− (1− p) log(1− p).

Notice that H2(p) = H(D) for the distribution D(0) = 1− p, D(1) = p on the set {0, 1}.
The following result solves the above problem of minimizing data transmission in a

noiseless channel.

Theorem 1 (Noiseless Coding Theorem) There exist functions E and D satisfying the
condition D(E(x)) = x such that

Expx←BSCp
[|E(x)|] = (H2(p) + o(1)) · n,

where n = |x| is the size of the original message.

3 Noisy Channel

Suppose that the source generates purely random strings (i.e. bits have values 0 or 1 with
equal probability). Consider a noisy channel which alters every bit transmitted through it
with probability p < 1/2. We can view the transmission process as follows: on input z, the
channel generates a string η ← BSCp of length |z| and outputs the modified string z + η.

As in the previous scenario, we would like to obtain functions

E : {0, 1}k → {0, 1}n

D : {0, 1}n → {0, 1}k

for encoding and decoding the message, respectively. One of our goals is to obtain a pair
of such functions such that the probability that the receiver gets a wrong message after
decoding the transmission is bounded above by a prescribed number ε > 0. Formally, this
condition can be written as follows:

Pr
η←BSCp
x←{0,1}k

[D(E(x) + η) 6= x] ≤ ε.

Having stated the condition, our problem is to maximize the value of k/n for which such E
and D exist.

Theorem 2 (Noisy Coding Theorem) Given δ > 0 and ε > 0, there exist functions E
and D satisfying the above conditions such that

k

n
= 1−H2(p)− δ

if k and n are sufficiently large.

We use the well-known lemma to prove the theorem.
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Lemma 3 (Chernoff Bound) Let D be a distribution on {0, 1}, and let x1, . . . , xN be
independent bits chosen from D. If µ = Expx←D[x], then for any λ the following inequality
holds:

Pr
xi←D

[∣∣∣∣∣
∑N

i=1 xi
N

− µ

∣∣∣∣∣ ≥ λ
]
≤ e−λ2·N

2 .

Proof of Theorem 2. Let k and n satisfy the inequality

k

n
= 1−H2(p)− δ,

and suppose that E : {0, 1}k → {0, 1}n is an arbitrary function. Define D(y) to be a string
x for which the Hamming distance ∆(E(x), y) is the smallest possible.

Choose a small constant γ > 0 such that

H2((p+ γ)) = H2(p) + δ′ < H2(p) + δ.

Now suppose that a string x ∈ {0, 1}k and the value E(x) ∈ {0, 1}n are fixed, and the
rest of values of E are chosen at random. For a string η ← BSCp of length n, we say that
η is bad if wt(η) > (p+ γ) · n. It follows from Lemma 3 that there exists a constant c > 1
such that

Pr
η←BSCp

[η is bad] < c−n. (1)

(Indeed, we have Expη←BSCp [wt(η)/n] = p, so setting λ = γ implies that the probability of

η being bad is less than e−γ
2·n

2 = c−n, where c > 1.)
Define Ball(z, r) to be the set of all strings z′ such that ∆(z, z′) ≤ r. Let y = E(x) + η.

Note that

|Ball(y, (p+ γ) · n)| =
(p+γ)·n∑
i=0

(n
i

)
≤ 1 + (p+ γ) · n ·

(
n

(p+ γ) · n

)
=

= 1 + (p+ γ) · n · 2(H2(p+γ)+o(1))·n = 2(H2(p)+δ′+o(1))·n

since (p+ γ) · n = 2o(1)·n.
Fix x′ 6= x. Then

Pr
E

[
E(x′) ∈ Ball (y, (p+ γ) · n)

]
=
|Ball (y, (p+ γ) · n)|

2n
≈ 2(H2(p)+δ′+o(1))·n

2n
.

We conclude that

Pr
E

[∃ x′ 6= x s.t. E(x′) ∈ Ball(y, (p+ γ) · n)] ≤ 2k · 2(H2(p)+δ′+o(1))·n

2n
= 2(δ′−δ+o(1))·n < a−n

(2)
for some a > 1. If η is not bad, i.e. wt(η) ≤ (p+ γ) · n, and there is no string x′ 6= x such
that ∆(y, x′) ≤ (p+ δ) · n, then we have D(y) = D(E(x) + η) = x, so the receiver gets the
correct message. We conclude from equations (1) and (2) that

Pr
E,η

[ the receiver gets a wrong message ] < a−n + c−n
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for any fixed x. It follows that

Pr
x,η

[ the receiver gets a wrong message ] < a−n + c−n

for some function E. Finally, observe that a−n + c−n < ε for sufficiently large n. The
theorem follows.

4 Converse Theorem

The following result shows that the bound in Theorem 2 is in fact tight.

Theorem 4 Let k and n satisfy the relation

k

n
= 1−H2(p) + δ(n)

for some δ(n) = Ω(1). Then

lim
k,n→∞

Pr
η

[D(E(x) + η) = x] = 0

for any pair of functions (E,D).

We briefly describe the idea of the proof. If η ← BSCp, then with high probability

we have wt(η) ≥ pn. There are at least
(
n
pn

)
strings z such that wt(z) ≥ pn, and the

string η equals each such string with probability of at most 1/
(
n
pn

)
. Thus in order for the

probability of successful decoding to be bounded below by a positive constant, we need to
have for every x about c ·

(
n
pn

)
strings y such that D(y) = x (here c > 0). However,

2k · c ·
(
n

pn

)
≈ 2k · c · 2H2(p)n+o(1) = c · 2n+nδ(n)+o(1) > 2n

for sufficiently large n. This is a contradiction, as there are only 2n strings of length n.
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