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In 1950, Richard Hamming wrote a paper dealing with the inevitable errors that occur when storing
digital information on magnetic disk. To start with a simple case, we may consider what it would take
to handle one bit errors when storing a sequence of bits. A straightforward approach would be to store
each bit three times, so that any one bit that is erroneously flipped can be detected and corrected by
majority decoding on its block of three. This is known as the repetition code, and is rather inefficient
as the ratio of actual information bits to total bits stored is only 1

3 .

The Hamming encoding tries to do better with the following matrix:

G =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1


Given a sequence of bits, we chop it into 4 bit chunks. Let b be the vector representing one such

chunk, then we encode b as the 7 bit bG, where all arithmetic is performed mod 2. Clearly the efficiency
is a much better 4

7 , though we still need to show that this code can correct one bit errors.

Claim 1 ∀ b1 6= b2, b1G and b2G differ in ≥ 3 coordinates.

First we present some definitions. We denote by Σ the alphabet, and the ambient space Σn represents
the set of n letter words over the alphabet Σ.

Definition 2 The Hamming distance ∆(x, y) between x, y ∈ Σn is the number of coordinates i where
xi 6= yi.

The Hamming distance is a metric since it is easy to verify that:

∆(x, y) = ∆(y, x)

∆(x, z) ≤ ∆(x, y) + ∆(y, z)

∆(x, y) = 0⇔ x = y

In our case, consider the space of all possible encoded words {0, 1}7. If we can prove our claim, then
this means that in this space and under the Hamming metric, each code word bG will have no other
code word within a radius of 2 around it. In fact, any point at Hamming distance 1 from a code word
is guaranteed to be closer to that code word than any other, and thus we can correct one bit errors.

Definition 3 An Error Correcting Code is a set of code words C ⊆ Σn. The minimum distance of C,
written ∆(C), is the minimum Hamming distance between pairs of different code words in C.

Definition 4 An Error Correcting Code is said to be e error detecting if it can tell that an error occurred
when there were ≤ e errors, and at least one error occurred. It is said to be t error correcting if it can
tell where the errors are when there were ≤ e errors, and at least one error occurred.

Definition 5 The Hamming weight wt(v) of a vector v is the number of non-zero coordinates of v.

Proposition 6 ∆(C) = 2t+ 1⇔ the code C is 2t error detecting and t error correcting.
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Proof : ∆(C) = 2t + 1 ⇒ 2t error detecting since the word would simply not be a code word.
∆(C) = 2t + 1 ⇒ t error correcting since the word would be closer to the original code word than any
other code word. We omit the reverse implications for now, though we note that the case for t error
correcting is easy.

We now present some key code parameters:

q = |Σ|
n = block length of code(encoded length)
k = message length(pre-encoded length) = logq |C|
d = ∆(C)

Usually, we fix three of the above parameters and try to optimize the fourth. Clearly, larger k and d
values, and smaller n values are desirable. It also turns out that smaller q values are desirable. We may
also try to maximize the rate of the code(efficiency ratio) k

n and the relative distance d
n . We denote an

error correcting code with these parameters as a (n, k, d)q code.

Thus, proving our claim boils down to showing that {bG|b ∈ {0, 1}4} is a (7, 4, 3)2 code.

Proof : Assume that ∆(b1G, b2G) < 3 for b1 6= b2 ⇒ ∆((b1 − b2)G, 0) < 3 ⇒ ∃ non-zero c ∈ {0, 1}4
s.t. wt(cG) < 3.

Consider the matrix

H =



0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1


We show in problem set 1 that {bG|b} = {y|yH = 0}. Hence, it suffices to prove that: if a non-zero

y ∈ {0, 1}7 s.t. yH = 0⇒ wt(y) ≥ 3, since this would contradict that wt(cG) < 3 for some non-zero c.
Assume wt(y) = 2⇒ 0 = yH = hi +hj , where h1, h2, ..., h7 are the rows of the matrix H. But by the

construction of H, this is impossible. Assume wt(y) = 1⇒ some row hi has all zeros. Again, impossible
by construction.

Thus wt(y) is at least 3 and we are done.

From the properties of the matrix used above, we see that we may generalize the H matrix for codes of
block length n = 2l − 1 and minimum distance ≥ 3 simply by forming the 2l − 1 by l matrix where the
rows are the binary representations of all integers between 1 and 2l − 1. The message length k that this
generalized H corresponds to is left as an exercise.

Error correcting codes find application in a variety of different fields in mathematics and computer
science. In Algorithms, they can be viewed as interesting data structures. In Complexity, they are used
for pseudo-randomness, hardness amplification, and probabilistically checkable proofs. In Cryptography,
they are applied to implement secret sharing schemes and proposal cryptosystems. Finally, they also
arise in combinatorics and recreational mathematics. We mention two examples in which error correcting
codes are useful. The first requires the concept of pairwise independence.

Definition 7 S ⊆ {0, 1}n is pairwise independent if ∀ i, j ∈ {1, ..., n}, and b, c ∈ {0, 1}, we have

Pry∈S [yi = b and yj = c] =
1
4
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Given a randomized algorithm A that uses n random, independent bits, it may be the case that we re-
quire only limited independence from these bits. In particular, if we only require pairwise independence,
then we can derandomize A as follows. Instead of picking a random y, we fix y and run the algorithm
for all y ∈ S, since for our purposes, the set S is good enough. Since A had a positive probability of
success before, it must succeed for some y ∈ S, and so we have a deterministic algorithm. However, the
running time is now O(|S|) · runningtime(A), and we would like to make sure that S is not too large.
It turns out that ∃ S s.t. |S| = O(n).

The second example is the Hat Problem. There are n people wearing black or white hats. Each
person can see all hats except his/her own, and no communication is allowed. Each person tries to guess
his/her own hat color and writes down “Black”, “White”, or “Abstain”. If everyone abstains, the game
is lost. If someone guesses incorrectly, the game is lost. Otherwise, the game is won. What’s the optimal
strategy and the corresponding probability of winning?

Later in the course, we will cover more history, more error correcting codes, lower bounds and
impossibility results, algorithms in coding theory, and various applications.
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