
Essential Coding Theory Madhu Sudan
6.896
Due: Wednesday, October 30, 2002

Problem Set 3

Instructions: See PS1.

1. Asymptotics of codes: Given ε > 0 express the rate of the best family of binary codes of
relative distance 1

2 − ε, you can (a) construct, and (b) show the existence of. Express the rate
in big-Oh notation (i.e., O(εd) implies there exist constants c and ε0 such that for all ε < ε0,
the rate of the code of relative distance 1

2 − ε is at least cεd.) How constructive are your codes
in Part (a)?

Obviously one should be doing Part (b) first. The Gilbert-Varshamov bound gives a
rate of R = 1 − H(1

2 − ε). Using H(1
2 − ε) = 1 − Θ(ε2), we get R = Θ(ε2) for a

randomly chosen code. As mentioned in lectures, this is shown to be optimal by the
Linear Programming bound, so can’t be improved.

For constructive results, we have two options:

Option 1 - Concatenation of Reed-Solomon code with ”greedily chosen code”: Here
for an appropriate integer `, we pick an outer RS code of relative distance 1 − ε/2
and block length 2` over an alphabet of size q = 2`. The rate of this code is ε/2.
We then concatenate it with a greedily chosen binary code of relative distance 1

2 −
ε
2 ,

message length ` and block length `/Θ(ε2). The concatenated code has block length
n = q2/Θ(ε2), rate Θ(ε3) and relative distance (1 − ε/2)(1

2 −
ε
2) ≥ 1

2 − ε. The
construction time of this code is dominated by the time taken to construct the inner
code which is 2`/Θ(ε2) = nΘ(1/ε2).

Option 2 - Concatenation of AG codes with Hadamard code: In this case we pick an
appropriately large constant q so that an outer AG code of relative distance 1− 2ε and
rate ε of arbitrarily long block length ` can be found. Note that this requires q = O(ε2)
(since an AG code needs 1−R− δ ≥ 1√

q−1). Now concatenate this code with an inner

Hadamard code with q messages and block length roughly q. The rate of this code is
log q/q = Θ(ε−2 log 1

ε ). Concatenating the two gives a code of block length n = `ε−2,
rate Ω(ε−3 log 1

ε ) and relative distance 1
2 − ε. So the code has slightly better rate (by a

logarithmic factor. Furthermore it can be constructed in time that is a fixed polynomial
in n (Θ(n2) as per latest results).

The literature has a third code with such rate and distance, due to Alon, Bruck, Naor,
Naor and Roth. We may encounter this code later.

2. Variants of RS codes: The two parts of this question consider variants of Reed-Solomon codes
over Fq, obtained by evaluations of polynomials at n distinct points α1, . . . , αn ∈ Fq. The
message will be speified by a sequence of coefficients c0, . . . , ck−1 ∈ Fq and its encoding will
be the evaluation of a polynomial p(x) at α1, . . . , αn. What will be different is the definition
of p(x) given c0, . . . , ck−1. Give exact bounds on the distance of the resulting code. (Note,
the distance may be a function of the set {α1, . . . .αn}.)
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(a) p(x) =
∑k−1

i=0 cix
i+`, where ` is some non-negative integer.

(b) p(x) =
∑k−1

i=0 cix
2i.

(a) For a message c0, . . . , ck−1, let C(x) =
∑k−1

i=0 cix
i be the standard Reed-Solomon

polynomial associate with this message. Then in the first part, the encoding of
this message is the sequence 〈α`iC(αi)〉ni=1. If ` = 0, this is just the Reed-Solomon
code and its distance equals n − k + 1. Else consider a non-zero codeword of
minimum weight. For every i s.t. α`iC(αi) = 0, either αi = 0 or C(αi) = 0.
There are at most k − 1 locations for which the latter can hold (for a non-zero
message) and at most one coordinate for which the former holds. Thus the code
has distance at least n − k. Furthermore equality holds iff there exists an i s.t.
αi = 0, else it distance is n− k + 1.

(b) Let C be as above. Then here the encoding is the evaluation of C at β1, . . . , βn
where βi = α2

i . This is essentially just a RS code, except we don’t know that the
βi’s are distinct. Indeed every βi could potentially appear twice in the sequence.
Let S be the set of βi’s that appear twice, and let T be the set of βi’s that appear
exactly once. Let s = |S| and t = |T | (so 2s+t = n). Then the minimum distance
of the code is at most n− (k− 1 + min{s, k− 1}). (Consider C which is zero on
all of S and k− 1− s points of T if s < k− 1 or on k− 1 points of S is s ≥ k− 1
- this achieves the bound.)
Now to get some bounds on s for given q and n. If q is a power of two, then s = 0,
since the map α 7→ α2 is a bijection with the map β 7→ βq/2 inverting it. For
other fields there are at exactly q/2 distinct squares in the field. So this implies
n− q/2 ≤ s ≤ n/2 and any s in this range is achievable.

3. Hadamard matrices: Recall that an n× n matrix H all of whose entries are from {+1,−1} is
a Hadamard matrix if H ·HT = n · I where the matrix product is over the reals and I is the
n× n identity matrix.

(a) Show that if there is an n× n Hadamard matrix then n is either 1 or 2 or a multiple of
4.

Let a, b, c be three distinct rows of a Hadamard matrix. (So we are assuming
n ≥ 3.) For i, j ∈ {1,−1}, let Si,j = {k|ak = i · bk and ak = j · ck}. Let
α = |S1,1|, β = |S1,−1|, γ = |S−1,1|, and δ = |S−1,−1|. Then α + β counts the
number of coordinates where a equals b and so α + β = n/2. Similarly α + γ
counts the number of coordinates where a equals c and so α + γ = n/2. Finally,
α+ δ counts the number of coordinates where b equals c and so α+ δ = n/2. Oh,
and of course, α + β + γ + δ = n. Solving the 4 × 4 linear system above, we get
α = β = γ = δ = n/4. Since each is an integer, we have n must be a multiple of
4.

(b) Given an n × n Hadamard matrix Hn and an m ×m Hadamard matrix Hm, construct
an (nm)× (nm) Hadamard matrix.

Let F be any field (say rationals, for this problem). For vectors a ∈ Fn and bFm,
let a⊗b ∈ Fnm denote their outer product (aka tensor product), namely the vector
whose ij-th coordinate is ai · bj . Note that if a, b are +1/− 1 vectors, then so is
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a⊗ b. Furthermore, if a, c ∈ Fn and b,d ∈ Fm,

〈a⊗ b, c⊗ d〉 =
∑
ij

aibjcidj = (
∑
i

aici)(
∑
j

bjdj) = 〈a, c〉 · 〈b,d〉.

We show how to use tensor products to build a big Hadamard matrix from two
smaller ones.
Let u1 . . . ,un be the rows of Hn and let v1 . . . ,vm be the rows of Hm. By the
condition HnH

T
n = nI, we have 〈ui,uj〉 = 0 if i 6= j. (Similarly for the vi’s.)

Let Hnm be the matrix whose rows are ui ⊗ vj for all i ∈ [n], j ∈ [m]. As
noted above, this is a +1/ − 1 matrix. Thus the diagonal entries of HnmH

T
nm

are all nm as required. Now consider the off-diagonal entry (HnmH
T
nm)(ij),(kl) =

〈ui⊗vj ,uk⊗vl〉 = 〈ui,uk〉 · 〈vj ,vl〉. Since at least one of the conditions i 6= k or
j 6= l holds, we have the above inner product is zero. This proves the off-diagonal
entries are zero as required.

(c) (Not to be turned in) Let q be a prime power equivalent to 3 modulo 4. Let H = {hij} be
the (q+1)× (q+1) matrix with hij = 1 if i = 1 or j = 1 or i = j, and hij = (j− i)(q−1)/2

otherwise. Verify that H is a Hadamard matrix. (The purpose of this exercise is point
out that Hadamard matrices of many size, and not just powers of 2, exist.)

Turns out there were some typoes in the above question so it was not easy to
“verify”. Will post revised question + answer shortly. (Some you nevertheless
responded with “verified”!)

4. Let C be an infinite family of binary codes obtained by concatenation of two infinite families
of codes C1 and C2. (The ith code of C is obtained by concatenating the ith code of C1 with
the ith code in C2. The block lengths of the codes in C1 and C2 tend to infinity as i→∞.)
Give an upper bound on the rate of C as a function of its minimum distance.

Informally, If C1 has rate R1 and rel. distance δ1 then by the Singleton bound R1+δ1 ≤
1. Similarly if C2 has rate R2 and rel. distance δ1, then R2 + 2δ2 ≤ 1 (by the Plotkin
bound, since C2 is binary). The concatenated code has rel. distance δ = δ1δ2 and
rate R ≤ (1 − δ1)(1 − 2δ2). Setting δ2 = δ/δ1 and maximizing over δ1 we get
R ≤ maxδ≤δ1≤1{1− δ1−2δ/δ1 + 2δ} = 1−2

√
2δ+ 2δ. A “Mathematica” plot reveals

this is not as good as the GV bound. Some analytic confirmation of this fact can be
found when δ approaches 0 - where the GV bound gives a rate of 1−O(δ log 1

δ ), while

this bound is 1 − Ω(
√
δ). On the other hand, when δ = 1

2 − ε and ε → 0, this bound
does not beat the GV bound asymptotically. (Both are Θ(ε2).) However replacing the
Plotkin bound above with the LP bound will allow us to prove an upper bound on the
rate of concatenated codes of O(ε3) which is again worse than the GV bound.

To be more formal with any of the above, we need to take into account the fact that spe-
cific members of these families are not subject exactly to the Singleton bound/Plotkin
bound, and furthermore their rates may vary. To deal with all this formally, let Ri,j
(resp. δi,j) denote the rate (resp. relative distance) of the jth code in the ith family.
Since the block lengths of the code C1 tends to infinity, we have: For every ε > 0,
there exists a j0 such that for every j ≥ j0, it is the case that R1,j + δ1,j ≤ 1 + ε
(Singleton bound using nj ≥ 1

ε ). Now since the length of the codes C2 tend to infin-
ity, once again we have: For every ε > 0, there exists a j′0 such that for all j ≥ j′0,
R2,j + 2δ2,j ≤ 1 + 2ε. Combining the two, we have for every j ≥ max{j0, j′0} the rate
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of the jth concatenated code Rj = R1,j · R2,j ≤ (1 − δ1,j)(1 − 2δ2,j) + O(ε). Using
δ1,j · δ2,j ≥ δ gives Rj ≤ 1− 2

√
2δ + 2δ +O(ε). Letting ε→ 0 gives the bound of the

first para, formally.

5. Consider the following simple edit distance between strings: x ∈ Σn is at distance d from
y ∈ Σm if y can be obtained from x by first deleting upto d coordinates of x and getting an
intermediate string z ∈ Σ` where ` ≥ n− d, and then inserting up to d characters into z (at
arbitrary locations) to get y. What are the analogs of the Singleton bound, the Hamming
(packing) bound on codes, and the Gilbert-Varshamov bounds for this measure of distance?

Both the Singleton and Hamming bounds obviously hold for edit distance codes as well
(since the edit distance is upper bounded by the Hamming distance). The issue is: Are
they tight?

The Singleton bound is essentially tight. Consider an [n, k, n−k+1] RS code C over a
q-ary alphabet with q � n. Now consider the code C ′ over the alphabet Σ = Fq × [n],
whose codewords are strings of the form (c′1, . . . , c

′
n) where c′i = (i, ci) and (c1, . . . , cn)

is a codeword of C. This code has qk = |Σ|k′ codewords with edit distance n− k + 1,
where k′ = k log q/(log q + log n). As q → ∞, this quantity approaches k, indicating
that these codes are achieving the Singleton bound (d ≥ n− k + 1).

As for the Hamming bound, obviously it is not tight since it is not tight even for
Hamming distance. However I don’t believe it is tight even for fixed d, unlike the case
of the Hamming distance. I don’t have a proof. Attempts welcome.

Finally the G-V bound in this case would be obtained by upper bounding the volume of
the ball of radius d. An easy bound is roughly

((
n
d

))2 2d (for a binary alphabet). This
would lead to the asymptotic bound saying there exists codes of rate R and distance δ
for R = 1− δ − 2H(δ).

Again, my guess would be that the G-V bound is close to being right (and in partic-
ular, one can’t have codes of relative distance δ = .4, say.) Proofs/counterexamples
welcome.
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