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Abstract

We study the following basic pattern matching problem.
Consider a “code” sequence c consisting of n bits
chosen uniformly at random, and a “signal” sequence
x obtained by shifting c (modulo n) and adding noise.
The goal is to efficiently recover the shift with high
probability. The problem models tasks of interest in
several applications, including GPS synchronization and
motion estimation.

We present an algorithm that solves the problem in
time Õ(n(f/(1+f)), where Õ(Nf ) is the running time of
the best algorithm for finding the closest pair among
N “random” sequences of length O(logN). A trivial
bound of f = 2 leads to a simple algorithm with a
running time of Õ(n2/3). The asymptotic running time
can be further improved by plugging in recent more
efficient algorithms for the closest pair problem.

Our results also yield a sub-linear time algorithm for
approximate pattern matching algorithm for a random
signal (text), even for the case when the error between
the signal and the code (pattern) is asymptotically as
large as the code size. This is the first sublinear time
algorithm for such error rates.

1 Introduction

The shift finding problem is defined as follows. We
are given a binary code vector c, and a signal vector
x obtained by rotating c by a shift τ and adding
noise. The goal is to estimate τ by finding the shift
that minimizes the distance between the signal and the
shifted code. The code is assumed to be uncorrelated
with any shift of itself, and hence minimizing the
distance yield a good estimate of τ . The problem can
be naturally extended to higher-dimensions, where the
inputs, c and x, are higher-dimensional matrices.

The importance of shift finding stems from two
reasons: 1) it is a basic problem at the heart of sev-
eral practical applications, including GPS synchroniza-
tion [HAKI12, Kap96] and motion estimation [ITU],
and 2) it has strong connections to a large body of work
on string/pattern matching algorithms, and hence ad-

vances on this problem can shed new lights on those
topics.

To see the practical use of shift finding, consider
how a GPS receiver locks on the satellite signal [Kap96].
Each GPS satellite is assigned a CDMA code, which
can be modeled as a random vector, c, of length n,
with each ci chosen independently and uniformly at
random from {−1, 1}. The satellite transmits its code
repeatedly. To lock on the GPS signal, a receiver has
to align the corresponding CDMA code, c, with the
received signal, x. This allows the GPS receiver to
estimate the delay in receiving the satellite code, which
enables the receiver to locate itself with respect to the
satellite. Since the GPS code is long and the receiver
has to synchronize with the various satellites visible
in its part of the globe, the shift finding process ends
up being time consuming and a major contributor to
GPS locking delay [HAKI12, Kap96]. Reducing the
runtime complexity of shift finding can lead to faster
GPS receivers, which also translates to reducing power
consumption in these devices (see [HAKI12] and the
references therein).

GPS is just one example of a class of applications
that employ shift finding to align a code with an en-
coded signal in order to measure delay and/or motion.
Other applications include motion estimation and com-
pensation in video [ITU], packet synchronization in ul-
tra wideband wireless transceivers [CLW+09], and the
estimation of relative travel times of sound waves used
for animal tracking or event localization [Spi00]. All
these applications can benefit from faster algorithms for
shift finding.

The best known algorithm for the general version
of shift finding takes O(n log n)-time, and works by
convolving c and x using the Fast Fourier Transform
(FFT). A recent paper [HAKI12] has proposed a linear-
time algorithm for the specific case where both the code
vector c and the noise are random. It is also known
that one needs a lower bound of Ω(n1/2) queries to
c and x in order to estimate the shift with constant
probability [BEK+03, AN10]. This lower bound holds
even for the case where the input is random. Perhaps



surprisingly, no sub-linear time algorithm is known for
shift finding.

The lack of a sub-linear algorithm is particularly
interesting since the problem is strongly related to the
well-studied approximate string matching problem (also
known as approximate pattern matching) [FP74, Nav01,
ALP04, LV89]. In the string matching problem, we are
given a string c of length m and a text vector x of length
n, the goal is to find a shift t that minimizes the distance
between c[0 . . .m − 1] and x[t . . . t + m − 1]. Although
there is a rich body of algorithms for approximate
string matching, those algorithms are either based on
the FFT (and hence run in at least Ω(n log n) time),
or improve over the FFT only when k, the number
of mismatched coordinates between the string and the
text, is small (i.e., k � m) [ALP04]. Investigating the
case of potentially many mismatched coordinates (i.e.,
k = o(m)), as defined in the shift finding problem, can
lead to new advances in this well-studied domain.

Our Results: In this paper, we consider the shift
finding problem in a setting where c is random and x
is equal to a shifted version of the code corrupted by
noise. Our basic noise model assumes that x = c(τ) +g,
where where c(τ) refers to the code shifted by τ , and
the entries gi are i.i.d. random variables taken from
the normal distribution with 0 mean and variance σ.
We also consider the Boolean error model where x is
obtained by flipping each entry in c(τ) with probability
η < 1/2.

Our first result is an algorithm that, for any con-
stant σ, runs in time O((n log n)2/3). To the best of our
knowledge, this is the first sub-linear-time algorithm for
this problem. The algorithm is simple and easy to im-
plement. This simplicity makes it a good candidate for
adoption in practical applications. Perhaps surprisingly,
the algorithm is purely combinatorial and does not use
any algebraic techniques such as the FFT (even though
it is inspired by the recent developments in sparse FFT
algorithms [HIKP12b, HIKP12a]).

Our second result improves the algorithm further by
utilizing a recent result of [Val12] on finding a correlated
pair of vectors. Suppose that we are given N random d-
dimensional vectors x1 . . .xN , where: each xi is chosen
uniformly at random from {0, 1}d, and the vectors are
independent except for an unknown pair xi,xj , such
that xi is obtained from xj by flipping each entry
with probability η < 1/2. The algorithm of [Val12]
identifies such a pair in O(Nf ) time for f = 3/4 · ω
for any constant η < 1/2, where ω is the square
matrix multiplication runtime exponent. Since ω ≤
2.372 [Wil12], we have f ≤ 1.779. Using this algorithm
as a subroutine, we give a shift finding algorithm

with the running time of O(n1−1/(1+f)) logO(1) n =
O(n0.641). The reduction is optimal in the following
sense: if we were given an algorithm for finding a
correlated pair of vectors with exponent f = 1 + ε, then
the shift-finding algorithm would have the running time
of n(1+O(ε))/2, which matches the lower bound on shift
finding up to the ε term in the exponent.

Our third result generalizes both algorithms to
incorporate the case where the code is of size m and the
signal is of size n, for m� n. Hence, we obtain the first
sub-linear approximate string matching algorithms that
do not require the number of mismatched coordinates
to be small (i.e., k = o(m) in our algorithms).

Our Techniques: Building on [HAKI12], our algo-
rithms use the technique of “folding”. Specifically, the
code c is partitioned into p blocks of size n/p that are
added to each other; the same transformation is ap-
plied to x. Folding has the property that if the sig-
nal x (approximately) matches the shifted code c(τ),
then the folded signal matches the folded code shifted
by t′ = τ mod (n/p). The shift t′ can be then found
in O(n/p log(n/p)) time, which is sub-linear in n for p
large enough.

However, folding itself takes time linear in n. To
overcome this difficulty, we show that the optimal shift
can be estimated using only a sub-linear number of
samples from the folded sequences. This in turn requires
accessing only a sub-linear number of samples from c
and x.

We present two algorithms for finding t′ for the
folded sequences. The simple variant of the algorithm
enumerates all possible shifts in the folded sequence,
and thus has a runtime roughly linear in n/p. For each
shift, it computes the correlation between O(log n) pairs
of samples from the folded code and the folded signal.
This requires proving a sharp concentration bound for
the estimated correlation value.

The more complex variant of the algorithm uses
correlated-pair-finding procedure to perform this task
in time sub-linear in n/p. Our reduction to the
correlated-pair-finding problem is ”black-box”. How-
ever, at present, the only algorithm that achieves a sub-
quadratic time for any constant η < 1/2 is the one due
to [Val12], so we utilize that algorithm as the subrou-
tine. To this end, however, we need to convert the i.i.d.
samples of the folded sequences (which are real-valued)
into a sequence of i.i.d. ±1 values, which are needed as
the input to the pair-finding algorithm. We show that
simply taking the signs of the folded samples suffices for
this purpose.

Note that it is plausible that we could use real-
valued samples as the input to the pair-finding algo-



rithm, or alternatively use the ±1 samples in our first
algorithm. However (i) using ±1 samples enables us
to provide a black-box reduction to the pair-finding al-
gorithm and (ii) using real-valued samples leads to an
algorithm that is simpler and likely more practical.

2 Related Work

String/Pattern Matching: There is a rich body of
work on approximate pattern matching (see [Nav01,
ALP04] for an overview). Starting from the semi-
nal work of [FP74], many of the approximate pattern
matching algorithms use FFT, and hence have running
times of at least Ω(n log n). Faster algorithms exist if
the number of mismatches k is bounded. In particu-
lar, the algorithm of [ALP04] (building on [LV89]) has
the runtime of O(n

√
k log k). Still, those algorithms im-

prove over the FFT only for small values of k.
Little is known about pattern matching in sub-

linear time. To the best of our knowledge, all such
algorithms were developed for random inputs. In
particular, the work in [KMP77] shows that the well-
known Boyer-Moore algorithm for the exact pattern
matching [BM77] has the expected running time of
O(n/m · log n), which is sub-linear in n for large m.
This result has been generalized to the k-mismatch
case [CM94], yielding an algorithm with a running time
of O(n/m · k log n).

Sketching: Recently, a number of papers have stud-
ied the sketching complexity of the shift-finding prob-
lem. The goal is to design a function F with output
length of at most b bits, such that for any c and x,
one can estimate the distance between c(τ) and x un-
der the optimal shift τ , given only F (c) and F (x), with
probability of at least 2/3. The minimal value of b sat-
isfying these conditions is referred to as the sketching
complexity of the problem. It is known that for average
inputs one can obtain sketch functions that use only
O(log n) bits [KR06]. The worst-case sketching com-
plexity of this problem is wide open ([IMNO11], Prob-
lem 13). The best bound achieves sketching complex-
ity of O(

√
n log n) for an approximation factor arbitrar-

ily close to 1, and has large time complexity (at least
n log n) [CM11]. One can achieve lower sketching com-
plexity, but the approximation factor becomes larger, of
the order of O(log2 n) [AIK08].

There is a connection between sketching and sub-
linear time algorithms for the shift finding problem.
Our algorithm implicitly uses a form of sketching, by
summing all folded entries in x and c. It is plausible
that sub-linear bounds for the worst case sketching
complexity would yield sub-linear-time algorithms for
shift finding in the worst case.

3 Notation

We denote by c = c0, . . . , cn−1 a binary code where the
coordinates c0, . . . , cn−1 are independent and identically
distributed random variables with values in {−1, 1},
such that Pr[ci = 1] = Pr[ci = −1] = 1/2. We use
c(t) to refer to the code c shifted by t = 0, . . . , n − 1,

i.e., c
(t)
i = ct+i mod n.

Noise Model: We assume that the input x is obtained
from c by adding some noise and a cyclic shift τ .
We consider two models of noise: Gaussian noise, and
Bernoulli noise. In the Gaussian noise model, the signal
is x = c(τ) + g, where g = (g0, g1, . . . gn−1) denotes
the noise vector. The coordinates of the noise vector
g are independent and identically distributed random
variables that follow a normal distribution with zero
mean and standard deviation σ.

In the Bernoulli noise model, the signal is x =
c(τ) � b, where b ∈ {−1, 1}n denotes the noise vector
and � denotes the pairwise product. The coordinates
b0, . . . , bn−1 of the noise vector b are independent and
identically distributed random variables with bernoulli
distribution from {−1, 1}, such that Pr[bi = −1] = η,

i.e., coordinate c
(τ)
i is flipped with probability η.

Note that the problem in the Gaussian noise model
can be reduced to the Bernoulli noise model:

Fact 3.1. Consider vectors c and x such that x =
c(τ) + g for some 0 ≤ τ < n, where g is a vector
of iid normal random variables with standard deviation
σ > 0. Let x′ = (x′0, . . . x

′
n−1) be the vector defined as

x′i = sign(xi). Then x′ has distribution x′ = c(τ) � b,
where b is a vector of iid Bernoulli random variables
with bias Pr[bi = −1] = η for η = 1

2 erfc(1/σ) where
erfc(.) is the complimentary error function. Note that
η = 1/2−Θ(1/σ) whenever σ = Ω(1).

Folding: For a vector c and integer p, we let c(p) be
the vector c folded p times into blocks of length n/p
(assuming p divides n). Specifically, for i = 0 . . . n/p −
1, we define c(p)i =

∑p−1
j=0 ci+jn/p. We define x(p)

similarly. For example, note that c(1) = c.
Projection on a Set: Finally, for vector c ∈ {−1, 1}n
and set X ⊂ {0, 1, . . . n− 1}, we let c|X be the vector c
projected onto the coordinates of the set X.

4 Basic Algorithm

We first present the basic algorithm, which achieves a
time complexity of O((n log n)2/3). In §6, we show how
to combine this algorithm with an algorithm of Valiant
to obtain a faster runtime.

Let p denote the number of folds, and l = n/p
the length of the folded vectors. (We later set p =

(n log n)
1/3

.) To find the shift τ such that the input



is x = c(τ), our algorithm takes two steps, as follows:

(1) Estimate the shift τ mod l :
The goal of this step is to find the shift t′ = τ mod l,
via the following (ideal) computation:

(4.1) t′ = arg max
0≤t<n/p

c(p)(t) · x(p),

where c(p) and x(p) are the code and signal folded into
blocks of size n/p as defined in §3, and · is the scalar
product.

However, we do not estimate t′ directly using
Eq. 4.1 because computing x(p) and c(p) takes a linear
time in n. Instead, we estimate it using the following
algorithm:

• Compute x(p)|X directly, where the set X =
{0, . . . ,

√
l log n− 1}.

• Compute c(p)|Y directly, where the set Y = Y0 ∪
. . .∪Y√l−1 and the subsets Yi are segments of length

s = O(
√

log n) equally spaced over [0 . . . l− 1], i.e.,
Yi = {i×

√
l, . . . , i×

√
l + s− 1}.

• For each candidate shift t ∈ [0 . . . l−1], we compute
the correlation on the intersecting coordinates i
using the quantities computed above:

dt =
∑

i∈X∩{Y−t}

c(p)
(t)
i · x(p)i

=
∑

i∈X∩{Y−t}

c(p)i+t · x(p)i

• Estimate t′ = arg maxt dt.

(2) Enumerate p possible values of τ :
To find the best match among the p shifts, t, that
satify t = t′ mod n/p, we calculate the cross cor-
relation between x|S and c(t)|S where the set S =
{0, . . . , O(log n)}. For t = t′+j ·n/p and j ∈ {0, . . . , p−
1}, we estimate τ by computing

τ = arg max
t=t′+j·n/p

∑
i∈S

c
(t)
i · xi.

5 Analysis of the Basic Algorithm

5.1 Correctness We prove the following theorem.

Theorem 5.1. (Correctness) Fix the length n ≥ 1,
the error rate 0 < η < 1/2, and the folding parameter
1 ≤ p ≤ n. Given vectors c and x = c(τ) � b in the
Bernoulli noise model with bias η, the algorithm from
§4 recovers the shift τ with high probability.

To prove this theorem, we need to introduce the fol-
lowing concentration bound, inspired by a dimensional-
ity reduction result of [Ach03].

Lemma 5.2. Fix n > 1, ε, δ > 0, and sparsity 0 < γ ≤
1. We set C to be a sufficiently large constant. Let A
be a matrix of size r = C/γ log 1/δ by n, where each
entry Aij is independent identically distributed as: Aij
is 0 with probability 1− γ, and otherwise Aij is random
from {−1,+1}.

Then, for any vector x ∈ Rn, we have that ‖Ax‖22
is a 1 ± ε approximation to γr‖x‖2 with probability at
least 1 − δ. In particular,

∑r
i=1(

∑n
j=1Ai,j)

2 ∈ [(1 −
ε)γnr, (1 + ε)γnr] with probability at least 1− δ.

To prove lemma 5.2, we need a concentration
bound for random projections using matrices with sub-
gaussian entries. Specifically, we use the following
lemma, adapted from [IN07]:

Lemma 5.3. Suppose that a real random variable Y is
symmetric and has unit variance. Moreover, assume
that Y is sub-gaussian, i.e. E[etY ] ≤ eνt

2

for all
t < 1/(200ν2), for some ν ≥ 1. Let Y1 . . . Yn be i.i.d.
copies of Y , let x be an n-dimensional unit vector, and
denote U =

∑n
j=1 xjYj. If U1 . . . Ur are i.i.d. copies of

U then for all 0 < ε < 25ν we have

Pr[|1/r
r∑
j=1

U2
i − 1| ≥ ε] ≤ 2e−rε

2/(400ν2)

Lemma 5.2 follows by applying Lemma 5.3 to the
random variable Y = Aij/

√
γ using ν = 1/

√
γ. To this

end we need:

Claim 5.4. For ν = 1/
√
γ and t < 1/(200ν2) = γ/200,

we have
E[etY ] ≤ et

2

≤ eνt
2

Proof. First note that t/
√
γ ≤ (γ/200)/γ ≤ 1/2.

Observe that

E[etY ] = 1− γ + γ/2[e−t/γ + et/γ ]

≤ 1− γ + γ/2(1− t/√γ + (t/
√
γ)2/2)

+γ/2(1 + t/
√
γ + 2(t/

√
γ)2/2)

≤ 1− γ + γ/2[2 + 2(t/
√
γ)2]

= 1− γ + γ + γt2/γ

= 1 + t2

≤ et
2

�

Now we can proceed with the proof of Theorem 5.1.

Proof. The main idea is to show that t′ = τ mod n/p
can be computed using the formula:

t′ = arg max
t

c(p)(t) · x(p)



Instead of proving this statement directly, we show
that if we sample coordinates from c(p) and x(p) and
estimate the above sum from the colliding coordinates
only (as we actually do in the algorithm), then the
argmax still holds.

We first develop some notation for analyzing
the above quantity. For 0 ≤ i < n/p and
a potential shift 0 ≤ t < p, define ai,t =

(
∑p−1
j=0 ct+i+jn/p)(

∑p−1
j=0 xi+jn/p). Note that the quan-

tity to estimate is equal to:

c(p)(t) · x(p) =

n/p−1∑
i=0

p−1∑
j=0

ct+i+jn/p

 ·
p−1∑
j=0

xi+jn/p


=

n/p∑
i=0

ai,t.

Furthermore, we note that

ai,t =

p−1∑
j=0

ct+i+jn/p

p−1∑
j=0

cτ+i+jn/pbτ+i+jn/p


=

1

2

∑
j

ct+i+jn/p

2

+
1

2

∑
j

cτ+i+jn/pbτ+i+jn/p

2

− 1

2

∑
j

ct+i+jn/p − cτ+i+jn/pbτ+i+jn/p

2

Thus ai,t is a sum of three terms, where each term is a
square of a sum of i.i.d. random variables.

The algorithm estimates t′ by estimating the scalar
product c(p)(t) · x(p) =

∑
ai,t from O(log n) terms ai,t.

First we show that for t′ = τ mod n/p, the value of the
estimator of the scalar product is large. Later we will
show that for t 6= τ mod n/p, the value of the estimator
of the sum is small.

Lemma 5.5. (Correct shift) Let t′ = τ mod n/p.
Let S ⊂ {0, 1, . . . n/p−1} be any set of size s = O(log n).
Then, with high probability, we have that

dt′ =
∑
i∈S

c(p)
(t′)
i · x(p)i ≥ 1

2 (1− 2η)p|S|.

Proof. We have that

dt′ =
1

2

∑
i

∑
j

cτ+i+jn/p

2

+
1

2

∑
i

∑
j

cτ+i+jn/pbτ+i+jn/p

2

− 2
∑
i

∑
j

cτ+i+jn/p(
1−bτ+i+jn/p

2 )

2

.

We apply Lemma 5.2 to each of the three terms sepa-
rately. The first two terms have the exact same prob-
ability distribution, and we estimate them using the
lemma with sparsity γ = 1. For failure probability
δ = 1/n2, we obtain that

∑
i

∑
j

cτ+i+jn/p

2

,
∑
i

∑
j

cτ+i+jn/pbτ+i+jn/p

2

∈ [(1− ε)p|S|, (1 + ε)p|S|].

For the last term, we note that we can apply Lemma 5.2
with sparsity γ = η since Pr[bi = −1] = η. We obtain
that the third term satisfies the following with high
probability:

∑
i

∑
j

cτ+i+jn/p(
1−bτ+i+jn/p

2 )

2

∈ [(1− ε)ηp|S|, (1 + ε)ηp|S|].

Putting all the bounds together, we have that

dt′ ≥ p|S|
2 (2(1− ε)− 4(1 + ε)η) ≥ p|S|(1− 2η− ε− 2εη),

with high probability. Setting ε = 1−2η
2(1+2η) ≥ (1− 2η)/4,

we obtain the desired result. �

Lemma 5.6. (Wrong shift) Let t 6= τ mod n/p.
Let S ⊂ {0, 1, . . . n/p−1} be any set of size s = O(log n).
Then, with high probability, we have that

dt =
∑
i∈S

c(p)
(t)
i · x(p)i <

1
2 (1− 2η)p|S|.

Proof. As in the previous lemma, we apply Lemma 5.2



to the three terms of dt. Now dt is as follows:

dt =
1

2

∑
i

∑
j

ct+i+jn/p

2

+
1

2

∑
i

∑
j

cτ+i+jn/pbτ+i+jn/p

2

− 2
∑
i

∑
j

ct+i+jn/p − cτ+i+jn/pbτ+i+jn/p

2

2

.

Again, the first two terms can be estimated using
Lemma 5.2 with sparsity γ = 1. For failure probability
δ = 1/n2, we obtain

∑
i

∑
j

ct+i+jn/p

2

,
∑
i

∑
j

cτ+i+jn/pbτ+i+jn/p

2

∈ [(1− ε)p|S|, (1 + ε)p|S|].

To estimate the last term, we use the lemma with
sparsity γ = 1/2. There is one complication that some
random variables may appear twice in this term — in
particular, when there exist some i, i′ ∈ S such that
t + i = τ + i′ — which breaks the assumption of
independence. In this case, it is not hard to see that
one can split the set S into two equal-size sets S1, S2,

such that
∑
i∈Sk

(∑
j
ct+i+jn/p−cτ+i+jn/pbτ+i+jn/p

2

)2

, for

k ∈ {1, 2}, is each composed entirely of independent
variables. We apply Lemma §5.2 to each of the two
sums separately. We conclude that

2
∑
i

∑
j

ct+i+jn/p − cτ+i+jn/pbτ+i+jn/p

2

2

∈ [2(1− ε) 1
2p|S|, 2(1 + ε) 1

2p|S|].

Overall, we conclude that

dt ≤ p|S|
2 (2(1 + ε)− 2(1− ε)) ≤ 2εp|S|,

with high probability. Setting ε = (1− 2η)/5, we arrive
at the desired conclusion. �

Lemmas 5.5 and 5.6 thus show that the algorithm
computes t′ = arg maxt dt such that t′ = τ mod n/p.
Indeed, for each candidate t ∈ {0, . . . n/p − 1}, it
computes dt as a sum of ai,t for i ∈ S = X∩{Y−t}. By
construction of X and Y, we have that |S| = Ω(log n)
to satisfy the conditions of the two lemmas.

It remains to only prove that, once we have t′ = τ
mod n/p, the second step of the algorithm recovers the

entire shift τ . Indeed, the second step tests all possible
t ∈ {t′, t′+n/p, t′+ 2n/p . . .}, including t = τ . We need
to show that, with high probability,

τ = arg max
t=t′+j·n/p

∑
i∈S

c
(t)
i · xi.

Indeed, first consider the case that t = τ . Then, we

claim that
∑
i∈S c

(t)
i ·xi is at least 1

2 (1− 2η)|S|. We use
the following standard concentration bound.

Lemma 5.7. (Chernoff) Let b = (b0, . . . bn−1) ∈
{−1, 1}n be a vector of iid Bernoulli random variable
with bias Pr[bi = −1] = η where 0 < η < 1/2. Then,
for a fixed ε > 0, the sum

∑
i bi is inside the interval

[(1 − 2η − ε)n, (1 − 2η + ε)n] with probability at least

1− e−Ω(ε2n).

Applying this lemma with ε = (1− 2η)/2, we have that∑
i∈S c

(t)
i · xi =

∑
i∈S bt+i ≥

1
2 (1− 2η)|S|.

We now consider the case that t 6= τ mod n. Then∑
i∈S c

(t)
i · xi =

∑
i∈S ci+tci+τ bi+τ . All the involved

random variables are independent since |t− τ | ≥ n/p�
|S|. Applying Lemma 5.7, we have that

∑
i∈S c

(t)
i ·xi ≤

ε|S| with high probability. For ε = 1
3 (1 − 2η), we have

that
∑
i∈S c

(t)
i · xi ≤ 1

3 (1− 2η)|S|.
We conclude that τ = arg maxt=t′+j·n/p

∑
i∈S c

(t)
i ·

xi. This completes the proof of correctness. �

5.2 Runtime We now analyze the runtime of the
algorithm.

Theorem 5.8. (Runtime) For any p <
√
n and fixed

0 < η < 1/2, the algorithm from §4 runs in time
O(
√
n/p · log n · p + n/p · log n). In particular, for

p = (n log n)1/3, the runtime becomes O((n log n)2/3).

Proof. The first step of the algorithm estimates c(p)i
and x(p)i for O((n/p log n)1/2) positions i. Each c(p)i
is a sum of p values. Hence, this process takes
O((n/p log n)1/2 ·p) time. Then the algorithm computes
t′ by trying n/p shifts t, each requiring O(log n) time.
This adds another O(n/p · log n) time. Finally, in the
second step, the algorithm performs O(p log n) futher
computation, which is a low order term. �

6 Faster Algorithm

In this section, we show how to improve our basic
algorithm, using the following closest pair algorithm,
which follows from an algorithm of Valiant [Val12].

Theorem 6.1. ([Val12]) Consider n random vectors
in {±1}d, which are fully independent, except for at
most one pair of vectors. For any constant c, if this
pair is ρ-correlated coordinate-wise and d ≥ c logn

ρ2 , then

one can find this pair in time dn1.779ρ−O(1).



6.1 Algorithm Description Now we describe the
new algorithm. As before, p is the number of folds,
l = n/p, and s = O(log n).

(1) Estimate the shift τ mod l :

• Compute x(p)|X directly, where the set X =
{0, . . . ,

√
l + s− 1}.

• Compute c(p)|Y directly, where the set Y = Y0 ∪
. . . ∪ Y√l−1 and the subsets Yi are segments of
length s equally spaced over [0 . . . l − 1], i.e., Yi =
{i×

√
l, . . . , i×

√
l + s− 1}.

• For each i ∈ X, let x′(p)i = sign(x(p)i), and for
each i ∈ Y, let c′(p)i = sign(c(p)i).

• Consider 2
√
l points in an s-dimensional space:

x′(p) |Xi where Xi = {i, . . . i + s − 1}, for all
0 ≤ i <

√
l, as well as c′(p) |Yj for 0 ≤ j <

√
l.

Call them {vi}i ⊂ {±1}s and {uj}j ⊂ {±1}s.
• For 0 ≤ k < 2s, let Ik = {k, k + 2s, k + 4s, k +

6s, . . .} ∩ X. Use the closest pair algorithm from
Theorem 6.1 on the vectors {vi}Ik and uj , for each
0 ≤ k < 2s separately. Out of all (at most) 2s
outputs, choose the pair (vi, uj) that maximizes the
dot product vi · uj ≥ Ω(s).

• Set t′ = j ×
√
l − i mod n/p.

(2) Enumerate p possible values of τ :
To find the best match among the p shifts t that
satify t = t′ mod n/p, we calculate the cross cor-
relation between x|S and c(t)|S where the set S =
{0, . . . , O(log n)}. For t = t′+j·n/p and j ∈ {0 . . . p−1},
we estimate τ by computing

τ = arg max
t=t′+j·n/p

∑
i∈S

c
(t)
i · xi.

6.2 Analysis of the Faster Algorithm We start
from the following lemma.

Lemma 6.2. Consider two sums S =
∑N
i=1 ri and S′ =∑N

i=1 ri·bi, where ri’s are i.i.d. random variables chosen
uniformly at random from {−1, 1}, and bi ∈ {±1} are

any binary variables such that
∑N
i=1 bi ≥ αN for some

α > 0. Consider the probability

P (α,N) = Pr[sign(S) 6= sign(S′)]

For any α > 0 there exists β = Θ(α) such that for all
N ≥ 1 we have P (α,N) ≤ 1/2− β.

Proof. Let F be the set of indices i such that bi = −1,
and let U = {1 . . . N} − F . Note that |F | ≤ (1/2 −
α/2)N . For any set A ⊂ {1 . . . N} let SA =

∑
i∈A ri.

Clearly S = SU+SF and S′ = SU−SF . Thus, the event
sign(S) 6= sign(S′) holds if and only if |SU | ≤ |SF |.

It suffices to estimate the probability that |SU | ≤
|SF |, where |U | = N/2 + γN/2 and |F | = N/2 − γN/2
with γ ≥ α.

Let V ⊂ U be a set of N/2−γN/2 random variables.
Note that the distribution of SV is the same as SF .
Also, let z = SU − SV . Without loss of generality, we
can assume z ≥ 0.

We view the process of generating SV and SF as
follows. First, we generate two random variables P1

and P2 that are each a sum of |V | = N/2 − γN/2 iid
random variables, conditioned on P1 ≥ P2 ≥ 0. Then
we assign {P1, P2} to {SV , SF } randomly, with random
±1 signs. It is easy to check that if P1 > P2 + z, then
Pr[|z+SV | > |SF | | z, P1, P2] = 1/2. On the other hand,
if P1 ≤ P2+z, then Pr[|z+SV | > |SF | | z, P1, P2] ≥ 1/2,
since the event holds if SV > 0, which happens with
probability at least 1/2. However, the probability could
be higher than 1/2 for specific values of z, P1, P2.

One case where such a bias occurs is when z−P1 >
z/2 and P2 < z/2. Denote this event by E. In this case,
Pr[|z + SV | ≥ |SF | | z, P1, P2] ≥ 3/4. We estimate the
probability of E using the following claim.

Claim 6.3. Let
∑
i xi be a sum of k i.i.d. random

variables distributed uniformly over {−1, 1}. Then, for
each s ∈ [−

√
k,
√
k], Pr[

∑
xi = s] ∈ [C1/

√
k,C2/

√
k]

for some constants C2 > C1 > 0.

Since z is a sum of γN random variable, using the
claim, we have z ≥ 1

2

√
γN/2 with probability at least

C1/2. Further, we have P1, P2 ∈ [0, 1
5

√
γN/2] with

probability at least C1
√
γ/5.

Thus, we have that with probability at least C1/2 ·
(C1
√
γ/5)2 = C3

1γ/50 over the choice of z and P1, P2,
we have that Pr[|z + Sv| > |SF | | z, P1, P2] ≥ 3/4.

All in all, we conclude that Pr[|SU | > |SF |] ≥
1
2 (1 − C3

1γ/50) + 3
4 · C

3
1γ/50 = 1

2 + C3
1γ/200. Hence,

P (α,N) ≤ 1/2− C3
1α/200. �

We now proceed to show the correctness of the
algorithm.

Theorem 6.4. (Correctness) Fix length n ≥ 1, er-
ror rate 0 < η < 1/2, and folding parameter 1 ≤ p ≤ n.
Given vectors c and x = c(τ)�b in the Bernoulli noise
model with bias η, the algorithm from §6.1 recovers the
shift τ with high probability.

Proof. The proof is similar to that in §5. Let t′ be such
that t′ = τ mod n/p. First, we have the following claim
regarding the strings x′(p) and c′(p) obtained by taking
signs of the folded strings.

Claim 6.5. Fix any integers i, j. If i+t′ = j mod n/p,
then Pr[x′(p)i = c′(p)j ] ≥ 1/2 + ε, for some ε =



ε(1/2 − η) > 0. On the other hand, if i + t′ 6= j
mod n/p, then Pr[x′(p)i = c′(p)j ] = 1/2.

The claim follows from the Lemma 6.2 and that∑p−1
j=0 bi+jn/p ≥

1/2−η
2 p with high probability.

Hence x′(p) and c′(p) are just a n/p-length instance
of the original problem with new error η′ = 1/2− ε. At
this moment, the algorithm takes s = O(log n) length
substrings of x′(p) and c′(p).

We can now apply the closest pair algorithm on
the resulting vectors. The hope is that the algorithm
finds the pair vi = x′(p)|Xi and uj = c′(p)|Yj such that

i + t′ = j
√
n/p mod n/p for 0 ≤ i, j <

√
n/p (note

that such i, j exist by construction of sets X,Y). A
technical detail is that we have to deal with some limited
independence. Specifically, substrings of x′(p) may be
overlapping, and substrings of c′(p) may be dependent
on some substrings of x′(p) (for the wrong shift).

We prove the following claims. Remember that
vi = x′(p)|Xi and ui = c′(p)|Yi .

Claim 6.6. There exists some small constant C > 0
such that, for all 0 ≤ i, k <

√
n/p and i < k, |vivk| ≤

Cs, with high probability.

Proof. Fix some i < k. If k ≥ i+ s, then the statement
follows immediately by Chernoff bound: |vi · vk| ≤
O(
√
s log n) ≤ Cs with high probability.
The tricky part occurs when k < i + s, in which

case vi and vk overlap. But one can partition the
set of coordinates into two equal-sized sets S1, S2 such
that v′i = vi|S1

, v′k = vk|S1
are fully independent and

v′′i = vi|S2 , v
′′
k = vk|S2 are also fully independent. Since

|S1|, |S2| = s/2, we apply Chernoff bound to each to
conclude that |v′iv′k| ≤ Cs/2 and |v′′i v′′k | ≤ Cs/2, with
high probability. Hence |vivk| ≤ Cs as well. �

We prove a similar claim for intersecting pairs of
vectors vi and uj .

Claim 6.7. There exists a small constant C > 0 such
the following holds. Fix any 0 ≤ i, j <

√
n/p, and

suppose i + t′ 6= j
√
n/p mod n/p. Then |viuj | ≤ Cs

with high probability.

Proof. Again, if s ≤ |i+t′−j
√
n/p| mod n, then vi and

uj are completely independent. So assume the opposite.
In such a case, we can partition the set of coordinates
into equal sized sets S1 and S2 so that vi|S1

, uj |S1
are

completely independent, and vi|S2
, uj |S2

are completely
independent too. Applying Chernoff bound to each of
them completes the proof. �

Note that, for the right shift, when i+ t′ = j
√
n/p

mod n/p, we have, by Chernoff bound, that |viuj | ≥
C ′εs for some constant C ′ satisfying C ′ε > C.

At this moment, we can just plug-in the result for
the closest pair problem 6.1. Note that the way we
choose the sets of vectors to run, all the vectors, except
at most one pair, are independent. After running all the
O(s) closest pair instances, by the above claims, we find
the pair i, j that maximizes arg maxi,j |viuj |, and, by the

above claims, we have that i+ t′ = j
√
n/p mod n/p.

The rest of the proof of the algorithm follows
precisely the same way as in §5. �

We now switch to runtime analysis. For any n ≥ 1
and p ≤

√
n, the algorithm from §6.1 runs in time

O(
√
n/p log n ·p)+O(log n ·T (2

√
n/p,O(log n)), where

T (n, d) is the running time of the random closest pair
on n vectors in d-dimensional Hamming space (as in
the statement of Theorem 6.1. For T (n,O(log n)) =
nf (log n)O(1), we set p = n(f−1)/(f+1) to obtain total

time nf/(f+1) logO(1) n. For f = 1.779 from Theorem
6.1, we obtain a total runtime of O(n0.641).

7 Pattern Matching

We address the pattern matching problem in the ran-
dom setting. The problem is defined as follows. Fix a
text/signal x of length n. The pattern/code is a vector c
of length m� n obtained as follows. For a random τ ∈
{0, 1, . . . n−m}, pick a substring x[τ,τ+m−1] of x start-
ing at position τ of length m, and let c = x[τ :τ+m−1]�b,
where b is Bernoulli noise of bias η < 1/2. Given c and
x, the goal is to recover τ .

Theorem 7.1. Fix integers n ≥ m ≥ 1, a bias 0 < η <
1/2, and assume m = Ω((1/2− η)−1 log n). Suppose we
are given a vector x of length n, and a vector c of length
m, where c = x[τ :τ+m−1]�b, where τ ∈ [0, n−m] and b
is a vector of i.i.d. ± random variables of bias η. There
is an algorithm to reconstruct τ with high probability, in
time O(n/m0.359).

Proof. The algorithm proceeds as follows. Let I =
{0,∆, 2∆, 3∆, . . . (n/∆ − 1)∆} for ∆ = m/2. For
each i ∈ I, we take y = x|[i:i+m−1], and apply the
algorithm from §6.1 to the strings c and y. Once the
algorithm returns a shift τi for the current i, check
whether x|[i−τi,i−τ+m−1] · c ≥ Ω((1/2 − η)m). If this
is the case, then report τ = i− τi.

We analyze the runtime of the algorithm. Since
each application of the algorithm from §6.1 takes
O(m0.641) time, the entire algorithm runs in time O(|I| ·
m0.641) = O(n/m ·m0.641) = O(n/m0.359).

We continue with analyzing the correctness of the
algorithm. For this, we just reuse the analysis of
Theorem 6.4 from §6.2. First of all, note that the
algorithm will never report a wrong τ . Thus we



just need to show the algorithm will find the right τ
eventually.

Fix i ∈ I to be such that τ ≤ i ≤ τ + m/2. In
this case, for δ = i − τ , we notice that x|[i,i+m−δ−1] =
c|[δ:m−1] � b|[δ:m−1]. Hence the hope is that the
algorithm recovers τi = δ, which would lead to recovery
of the correct τ = i−τi. We are almost in the setting of
the algorithm from §6.1, except that y|[m−δ,m−1], and
c|[0,δ−1] are random independent bits. We can think

of this as having y = c(δ) � b̄, where b̄j = bj for j ∈
[0,m−δ−1] and b̄j is random ±1 for j ∈ [m−δ,m−1].

Now take the p-folds of y and c. This can be
seen as a p-folds of the “common” part, y|[0,m−δ−1]

and c|[δ,m−1], plus the p-folds of the random parts,
y|[m−δ,m−1] and c|[0,δ−1]. We now use Lemma 6.2.
Note that for all integers l, we have

∑
j b̄l+jn/p =

Ω((1/2− η)p) since at least half of the b̄(p)j ’s have bias
towards 1 (while the others are random ±1). Also, for
k + δ 6= l mod n/p, y(p)k is completely uncorrelated
with c(p)l. Thus we have the following claim:

Claim 7.2. Fix any integers k, l, and let c′(p)k =
sign(c(p)k), y′(p)l = sign(y(p)l).

If k + δ = l mod n/p, then Pr[y′(p)k = c′(p)l] ≥
1/2+ε, for some ε = ε(1/2−η) > 0. On the other hand,
if k + δ 6= l mod n/p, then Pr[y′(p)k = c′(p)l] = 1/2.

Given the above claim, the rest of the proof follows
precisely the proof of Theorem 6.4. �
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