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This talk

Geometric
Functional
Analysis

« Two explicit constructions:
— A “low-distortion” embedding A:R"—R™, m=n'+(1) such that for any x
IAX]l, = (12€) |1l
(a.k.a. Dvoretzky’s Theorem for |,)

— A “nice” measurement matrix B: R”—>Rm m=k n°("),such that for any k-
sparse x, one can efficiently reconstruct x from Bx

(several matrices with >k? measurements known )



Embedding |," into |,

Distortion Dim. of |, Type Reference

1+0 O(n/o?) Probabilistic | [Kashin, Figiel-
Lindenstrauss-Milman,
Gordon]

O(1) O(n?) Explicit [Rudin’60,...]

1+1/n nO(iog n) Explicit [Indyk’00] (cf. LLR’94)

1+0 O(n/a?) Prob., [Indyk’00]

nlog?n
1+0 O(n/o?) Prob., nlogn | [Arstein-Avidan, Milman’'06]
1+0 O(n/o?) Prob., n Lovett-Sodin’07]
[ 1+1/10g n | n20togioan? | Explicit | [Indyk’06] |

| no(1) | n(1+o(1)) | Explicit’ | [Guruswami-Lee-Razborov'07] |




Other implications

« Computing Ax takes time O(n'*(1)) as
opposed to O(n?)

« Similar phenomenon discovered for
Johnson-Lindenstrauss dimensionality
reduction lemma [Ailon-Chazelle'06],

— Applications to approximate nearest neighbor
problem, Singular Value Decomposition, etc

(recall Muthu’s talk)




Techniques

* Uncertainty Principles
e Extractors



Uncertainty principles (UP)

Consider a vector xeR"and a Fourier matrix F

UP: either x or Fx must have “many” non-zero
entries (for x#0 )

History:
— Physics: Heisenberg principle

— Signal processing [Donoho-Stark’89]:
» Consider any 2nxn matrix A=[| B]" such that
— B is orthonormal
— For any distinct rows A;, A, of A we have
|A; " A |[<M (coherence)
« Then for any xeR"we have that
[|AX]|, >1/M
— E.g., if A=[I H]" , where H is a normalized nxn
Hadamard matrix
(orthogonal, entries in {-1/n"2, 1/n"? }):
° M:1/n1/2
«  Ax must have >n"? non-zero entries
— We need:
« A=[H, H, ... H ]"with low-coherence
(Kerdock codes)
* Non-zero — “significantly non-zero”
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Extractors

Expander-like graphs:
— G=(A,B,E), |A|=a, |B|=b
— Left degree d
Property:
— Consider any distribution P=(p,
— G(P) : a distribution on B:
* Pick i from P

* Pick t uniformly from [d]
* ] is the t-th neighbor of |

— Then [|G(P)-Uniform(B)||, < €
Equivalently, can require the above for p, =1/k or O
Many explicit constructions
Holy grail:

— k=b

— d=0(log a)

Can achieve bounds close to the above

Observation: w.l.0.g. one can assume that the right
degree is O(ad/b)




Overview

* Main idea behind the randomized
embedding: “spread the mass” over
many coordinates

— Before:
x=(1,0,0,0,0,0,0,0,0,...,0)
— After:
IAX| = (=1/m"2, .., =1/m'2, ..., ... ~1/m"?2)
— Therefore
1AX]]; = m"2 [|AX||, = mV2 |x]|,



Overview, ctd.

 We would like to obtain something like
AX| = (~1/m2, _ x1/m'2, ..., ..., ~1/m"2)

X 1 0 0 0 0 0 0 0 0

l UP: n'2 “significantly non-zero” entries

~1/n1/4 ~1/n1/4 ~1/n1/4
1/n 1/n O 1/n O O O O O

HEE NN EEEE.

Total dimension blowup: (log n)©(lcg legn)



Part |- :

=1/n"4 =1/n"4 0 =1/n"4 0 0 0 0 0

=1/n"4 =1/n"4 0 =1/n"4 0 0 Big Big 0

« Lemma:
— LetA=[H, H, ... H ], such that:
Each H;, is an nxn orthonormal matrix
For any two distinct rows A;, A; we have |[AA; | <M
M is called coherence
— Then, for any xeR", and set S of coordinates, |S|=s:

I(AX);s [ < 1+Ms
(note that || (Ax)|[,?=L)

 Proof:
— Take Aq
max -1 [[As X||,? = A(Ag x AgT)
— But AS X AS = |+E, |Eij|£M
— Since E is an s x s matrix, A(E) < Ms

« Suppose that we have A s.t. M<1/n"2, Then:
— Forany xeR", |S|=n"?, we have || (AX)g [|,*< 2
— At the same time, || (Ax)|,2=L
— Therefore, (1-2/L) fraction of the “mass” ||Ax||,? is contained in coordinates i s.t. (Ax),?<1/n"/2



Part Il:

* Lety=(yy, ... o)
* Define probability distribution

P=(y 2Vl - v 2lIYIIZ?)

« Extractor properties imply that, for "most”
buckets B,, we have

IG(y)gill2* = [|G(y)Il,* / #buckets

» After log log n steps, "most” entries will be
around 1/n"?




Incoherent dictionaries

« Can we construct A=[ H, H, ... H ]" with
coherence (close to) 1/n"2?
— For L=2, take A=[I H]"
— For L>2:

 |dea |: use method of conditional probabilities
— Take H, = H x D,, D, has £1 on the diagonal and O’s elsewhere
— Any pair of rows usH, and veH,, i#j, are probabilistically indep.
= |u*v| =O( n"2 log n / n ) with high probability
— Derandomize using method of conditional probabilities
* ldea Il: use Google (Scholar)
— Turns out A is known for L up to n/2+1 (Kerdock codes)
— Take H, = H x D, , D, has +1 on the diagonal and O’s elsewhere



Efficient measurement matrix

Only the edges from non-zero elements are shown

Decompose the graph into one-sided matchings |

/ hash functions
— d =2 0(oglogd)? hgsh functions
— Each function maps {1..n} into {1..0(k)}
For each hash function, a non-zero element is

isolated if it falls into a bucket that does not
overflow

— Can recover isolated entries using previous
results

— Cost: roughly T? measurements per bucket per
hash function

— Possible to set T to be polynomial in d
Hash function property (*): at most € of non-zero
entries are not isolated

— (*) satisfied for most hash functions if a graph is
an extractor

— Can use majority vote to determine non-zero
elements

Non-isolated elements lead to incorrect
identifications

Good news: only O(¢) fraction of incorrect
elements

— We recovered z s.t., ||z-x||, < O(e m)

— Recurse to recover z-x from Az-Ax
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Overflow if >T non-zero elements




Conclusions

« Extractors+UP — Embedding of |, into |,

— Dimension almost as good as for the probabilistic
result

— Near-linear in n embedding time

« Extractors + group testing — efficient
measurement matrix for sparse vectors

* Questions:
— Remove 2©(loglogn)z
— Making other embeddings/matrices explicit ?

— Any particular reason why both [AC’06] and this paper
use H x D, matrices ?



Appendix



Digression

« Johnson-Lindenstrauss’'84.:
— Take a “random” matrix A: R" —R™&? (m <<n)
— For any >0, xeR" we have
1Al = (1% €)]Ix]],
with probability 1-exp(-m)
— Ax can be computed in O(mn/e?) time
* Ailon-Chazelle’06:

— Essentially: take B= A x P x (H x D.), where
- H : Hadamard matrix
« D, :random +1 diagonal matrix
« P : projection on m? coordinates
« A as above (but n replaced by m/e?)

— Ax can be computed O(nlog n + m3/e?)



(Norm) embeddings

* Metric spaces M=(X,D), M’=(X",D’)
(here, X=Rn, X’=R™, D=|| .||, and D=||.||,.)
« A mapping F: M —M’ is a c-embedding if for any pe X, ge X we have

D(p,q) < D'(F(p),F(a)) <c D(p,q)

(or, |Ip-allx < [[F(p-a)llx < c [[p-allx )
« History:
— Mathematics:

+ [Dvoretzky’59]: there exists m(n,¢) s.t., for any m>m(n,c) and any space M'=(R™,||.||,. )
there exists a (1+¢)-embedding of an n-dimensional Euclidean space |," into M’

In general, m must be exponential in n
[Milman’71]: proof using concentration of measure methods

[Figiel-Lindenstrauss-Milman’77, Gordon]: if M'=|.™, then m ~ n/¢? suffices
Thatis, I, O(1)-embeds into |,°M
A k.a. Dvoretzky’s theorem for |,

— Computer science:
+ [Linial-London-Rabinovich’94]: [Bourgain’85] for sparsest cut, many other tools

» [Dvoretzky, FLM] used for approximate nearest neighbor [IM’98, KOR’98], hardness of
lattice problems [Regev-Rosen’06], etc.



