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“High-level Picture”
Compressed Sensing

• Random Projections
• L1 minimization
• (Uniform)  UP
• …

Data Stream /
Sublinear Algorithms

• (Pseudo)random Projections
• Isolation/Group Testing
• …

Geometric Functional Analysis
(Approximation Theory)

• Concentration of Measure
• Low distortion embeddings
• …

Pseudorandomness

• Derandomization
• Explicit constructions
• Expanders/extractors



This talk
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• Two explicit constructions:
– A “low-distortion” embedding A:Rn→Rm, m=n1+o(1), such that for any x

||Ax||1 = (1±ε) ||x||2
(a.k.a. Dvoretzky’s Theorem for l1)

– A “nice” measurement matrix B:Rn→Rm, m=k no(1),such that for any k-
sparse x, one can efficiently reconstruct x from Bx
(several  matrices with >k2 measurements known )
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Embedding l2n into l1

[Indyk’00]Prob., 
nlog2n

O(n/σ2 )1+σ

[Arstein-Avidan, Milman’06]Prob., nlognO(n/σ2 )1+σ

[Lovett-Sodin’07]Prob., nO(n/σ2 )1+σ

[Indyk’00] (cf. LLR’94)ExplicitnO(log n)1+1/n
Explicit

Probabilistic

Type

[Kashin, Figiel-
Lindenstrauss-Milman, 
Gordon]

O(n/σ2 )1+σ

[Rudin’60,…]O(n2)O(1)

ReferenceDim. of l1Distortion

[Indyk’06]Explicitn2O(log log n)21+1/log n

[Guruswami-Lee-Razborov’07]Explicit’n(1+o(1))no(1)



Other implications

• Computing Ax takes time O(n1+o(1) ), as 
opposed to O(n2)

• Similar phenomenon discovered for 
Johnson-Lindenstrauss dimensionality 
reduction lemma [Ailon-Chazelle’06],
– Applications to approximate nearest neighbor 

problem, Singular Value Decomposition, etc
(recall Muthu’s talk)



Techniques

• Uncertainty Principles
• Extractors
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Uncertainty principles (UP)
• Consider a vector x∈Rn and a Fourier matrix F
• UP: either x or Fx must have “many” non-zero 

entries (for x≠0 )
• History:

– Physics: Heisenberg principle
– Signal processing [Donoho-Stark’89]:

• Consider any 2n×n matrix A=[I B]T such that 
– B is orthonormal
– For any distinct rows Ai , Aj of A we have 

|Ai * Aj |≤M  (coherence)
• Then for any x∈Rn we have that

||Ax||0 >1/M
– E.g., if A=[I H]T , where H is a normalized n×n

Hadamard matrix
(orthogonal, entries in {-1/n1/2, 1/n1/2 }):

• M=1/n1/2

• Ax must have >n1/2 non-zero entries
– We need:

• A=[ H1 H2 … HL ]T with low-coherence 
(Kerdock codes)

• Non-zero → “significantly non-zero”
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Extractors
• Expander-like graphs:

– G=(A,B,E), |A|=a, |B|=b
– Left degree d

• Property:
– Consider any distribution P=(p1,…,pa) on A s.t. pi ≤1/k
– G(P) : a distribution on B:

• Pick i from P
• Pick t uniformly from [d]
• j is the t-th neighbor of i

– Then ||G(P)-Uniform(B)||1 ≤ ε
• Equivalently, can require the above for pi =1/k or 0
• Many explicit constructions
• Holy grail: 

– k=b
– d=O(log a)

• Can achieve bounds close to the above
• Observation: w.l.o.g. one can assume that the right 

degree is O(ad/b)

A B



Overview

• Main idea behind the randomized 
embedding: “spread the mass” over 
many coordinates
– Before:

x = (1, 0, 0, 0, 0, 0, 0, 0, 0, … ,0)
– After:

|Ax| = ( ≈1/m1/2, .., ≈1/m1/2, …, …,≈1/m1/2 )
– Therefore

||Ax||1 ≈ m1/2 ||Ax||2 ≈ m1/2 ||x||2 



Overview, ctd.
• We would like to obtain something like

|Ax| = ( ≈1/m1/2, .., ≈1/m1/2, …, … , ≈1/m1/2 )

000000001x

UP: n1/2 “significantly non-zero” entries 

00000≈1/n1/40≈1/n1/4≈1/n1/4

≈1/n1/40000≈1/n1/400≈1/n1/4

Extractor graph

…… …… ……
Repeat loglog n times

Total dimension blowup: (log n)O(log logn)



• Lemma:
– Let A=[ H1 H2 … HL ]T, such that:

• Each Hi is an n×n orthonormal matrix
• For any two distinct rows Ai, Aj we have |Ai*Aj | ≤M
• M is called coherence

– Then, for any x∈Rn, and set S of coordinates, |S|=s:
||(Ax)|S ||22 ≤ 1+Ms

(note that || (Ax)||22 = L )

• Proof:
– Take AS
– max ||x||=1 ||AS x||22 = λ(AS × AS 

T) 
– But AS × AS = I+E, |Eij|≤M
– Since E is an s × s matrix, λ(E) ≤ Ms

• Suppose that we have A s.t. M≤1/n1/2. Then:
– For any x∈Rn , |S|≤n1/2, we have || (Ax)|S ||22 ≤ 2
– At the same time, || (Ax)||22 = L
– Therefore, (1-2/L) fraction of the “mass” ||Ax||22 is contained in coordinates i s.t. (Ax)i

2≤1/n1/2

000000001

00000≈1/n1/40≈1/n1/4≈1/n1/4

0BigBig00≈1/n1/40≈1/n1/4≈1/n1/4

S

Part I: 



• Let y=(y1, …, yn’)
• Define probability distribution 

P=(y1
2/||y||22, …, yn

2/||y||22 )
• Extractor properties imply that, for “most”

buckets Bi, we have
||G(y)|Bi||22 ≈ ||G(y)||22 / #buckets

• After log log n steps, “most” entries will be 
around 1/n1/2

00000≈1/n1/40≈ 1/n1/4≈1/n1/4

≈1/n1/40000≈ 1/n1/400≈1/n1/4

y

G(y)

B1 B2 B3

Part II: 



Incoherent dictionaries
• Can we construct A=[ H1 H2 … HL ]T with 

coherence (close to) 1/n1/2 ?
– For L=2, take A=[I H]T
– For L>2:

• Idea I: use method of conditional probabilities
– Take Hi = H × Di , Di has ±1 on the diagonal and 0’s elsewhere
– Any pair of rows u∈Hi and v∈Hj, i≠j, are probabilistically indep.
⇒ |u*v| =O( n1/2 log n / n ) with high probability

– Derandomize using method of conditional probabilities
• Idea II: use Google (Scholar)

– Turns out A is known for L up to n/2+1 (Kerdock codes)
– Take Hi = H × Di , Di has ±1 on the diagonal and 0’s elsewhere



Efficient measurement matrix

• Decompose the graph into one-sided matchings
/ hash functions

– d = 2 O(log log d )2 hash functions
– Each function maps {1..n} into {1..O(k)}

• For each hash function, a non-zero element is 
isolated if it falls into a bucket that does not 
overflow

– Can recover isolated entries using previous 
results

– Cost: roughly T2 measurements per bucket per 
hash function

– Possible to set T to be polynomial in d
• Hash function property (*): at most ε of non-zero 

entries are not isolated
– (*) satisfied for most hash functions if a graph is 

an extractor
– Can use majority vote to determine non-zero 

elements
• Non-isolated elements lead to incorrect 

identifications
• Good news: only O(ε) fraction of incorrect 

elements
– We recovered z s.t., ||z-x||0 ≤ O(ε m)
– Recurse to recover z-x from Az-Ax

Overflow if   >T non-zero elements

……

Only the edges from non-zero elements are shown



Conclusions
• Extractors+UP → Embedding of l2 into l1

– Dimension almost as good as for the probabilistic 
result

– Near-linear in n embedding time
• Extractors + group testing → efficient 

measurement matrix for sparse vectors
• Questions:

– Remove  2O(log log n)2 ?
– Making other embeddings/matrices explicit ?
– Any particular reason why both [AC’06] and this paper 

use H × Di  matrices ?



Appendix



Digression
• Johnson-Lindenstrauss’84:

– Take a “random” matrix A: Rn→Rm/ε2 (m <<n)
– For any ε>0, x∈Rn we have 

||Ax||2 = (1± ε)||x||2
with probability 1-exp(-m)

– Ax can be computed in O(mn/ε2 ) time
• Ailon-Chazelle’06:

– Essentially: take B= A × P × (H × Di ), where
• H : Hadamard matrix
• Di : random ±1 diagonal matrix 
• P : projection on m2 coordinates
• A as above (but n replaced by m/ε2 )

– Ax can be computed O(nlog n + m3/ε2)



(Norm) embeddings
• Metric spaces M=(X,D), M’=(X’,D’)

(here, X=Rn, X’=Rm, D=|| .||X and D=||.||X’ )
• A mapping F: M →M’ is a c-embedding if for any p∈X, q∈X we have

D(p,q) ≤ D’(F(p),F(q)) ≤ c D(p,q)
(or, ||p-q||X ≤ ||F(p-q)||X’ ≤ c ||p-q||X )

• History:
– Mathematics:

• [Dvoretzky’59]: there exists m(n,ε) s.t., for any m>m(n,ε) and any space M’=(Rm,||.||X’ )
there exists a (1+ε)-embedding of an n-dimensional Euclidean space l2n into M’

• In general, m must be exponential in n
• [Milman’71]: proof using concentration of measure methods
• ……..
• [Figiel-Lindenstrauss-Milman’77, Gordon]: if M’=l1m, then m ≈ n/ε2 suffices

That is, l2n O(1)-embeds into l1O(n)

A.k.a. Dvoretzky’s theorem for l1
• …

– Computer science: 
• [Linial-London-Rabinovich’94]: [Bourgain’85] for sparsest cut, many other tools
• …….
• [Dvoretzky, FLM] used for approximate nearest neighbor [IM’98, KOR’98], hardness of 

lattice problems [Regev-Rosen’06], etc.


