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An csriniatp of tke  cross sections of nirclear retactions with rhemal nmrmns in terms 
o-f the average pararnerm of rhe farget nuchi s  (the srength function, the average level 
spacing, arid tire average rem fioion width) i s  obtained, The probability distn‘btitions for 
rJw ratios qf  acnrai tltermaf nei~tror~ cross sectioPts to their e$n*mored valtres are introduced. 
Tliese firnctfons cau be calc~dated from the statistical model. They are calculated for 
nerrtror? radiative cupnm and for imlastic neutro)? accelcmrion by the isomeric nuclei 
las  all as rhe (n.a] reaction, erc.1. Using tiiesc results, one can predict the probability of 
flndirig rhe acnial tllernial n c ~ t r o n  cross section in a given intervd. 

I. INT Rn 13C1 CTlO N 

Thc capture cross sections for thermal neutrons 
[the ( 1 1 , ~ )  reaction] have been measured for hundreds 
of nuclei.‘ However, for many nuclei (mainly ~111-  

Etable) they are still unknown. There are still fewer 
data on (it,a) tlicrmal neutron cross sections’?’ while 
thermal neutron cross section of the INelastic Neu- 
trcn Acceleration (INNA reaction) by nuclear isomers 
was oniy recently first measured for ‘52mE~l (Ref. 3). 
However, the need of  estimating these cross sections 
111 advance arises in B numl>er of cases. One needs 
wh estimates while planning the measurements of 
xoss sections. They are alse useful to estimate 
changes in the isotopic coriipositioii o f  the materials 
irradiated in nuclear rcactors by a high neutroon 
SIIX, etc. 

At thermal energies. the cross sectim of a 
reaction is completely dctermitled by the parameters 
of several low-lying resonances. Tliese parameters 
v a r y  significantly frorn one nucleus to another. 

‘S. F. MUGHAHt1AR a n d  D. I .  G A R B E R ,  “ N c u t r w  
 TOSS Sections,” Vu\.  1 I “Resrinance Paraiiicters,” BNL-325, 

‘Hf. P. POPOV, Preprint LNPI-263, Leningrad (1476); 
4 ANTONQV e t  al., Preprint J[NR.P3-1037’1. Dubna (1977); 

’YU. V. PETIIOV, %hf:TP (USSR], 37, 1170 t1959); 
*e aiso, JETP (SUV. Phys.), 10. 833 (1960); I. A. KON. 
DUROV, E. M. KORQTKIKH, and YU. P. PETROV, Zhl:’TP, 
pi5’t~~a3 31,254 (1980). 

1 
i ;rdcd., Brookhaven National Laboratory ( 1973). 

Russian}. 

Hence, even for the neighboring nuclei, cross sections 
can differ by several orders of magnitude and their 
exact values are unpredictable. 

Jn the present paper, the thermal neutron cross 
section of each nucleus is considered as a random 
variable distributed about its estimated value. The 
latter is expressed in tems of the average parameters 
of this nucleus, such IS the neutron strength function, 
the mean level spacing, and the average reaction 
width. All these quantities can be either cdculated 
or measured at energies much greater than thermal. 
Then the distribution function for the ratio of the 
actual thermal neutron cross section t o  its estimated 
value is introduced. Within tlie limits of the statistical 
model, it is determined by the laws of tlie distribu- 
tion of  resonance parameters near the corresponding 
mean valucs. Hence, the distribution function is 
the same for similar reactions with nuclei having a 
given spin. Once calculated, this function can be used 
for the quantitative prediction of the probability 
that cross sections will deviate consjdesably from 
their expected values. 

A similar function was first introduced by 
Gnrevich4 as long ago as 1939. I t  was used for 
estimatinff the mean level spacing between s-reso- 
nances in heavy nuclei. The actual distribution of the 
level spacings and the reduced neutron-width fluctua- 
tions had been unknown at that time. So, only the 
type of asymptotic beliavior of the distribution func- 
tion in the limit of very large cross sections had 
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been established. However, it allowed Gurevich to 
arrive at an important conclusion about the sharp 
increase of the level density in the region of t he  
rare earth nuclei. 

In the region of unresolved resonances, NikoIaev 
and Filippov5 and later Levitt' applied the probabilis- 
tic approach to the description of the cross-section 
enerm dependence. However, their probability dis- 
tributions are not universal, depending on the isotope 
and the energy interval considered. 

In Sec. I1 we express the expected thermal 
neutron cross sections in terms of the mean values 
of the resonance parameters. In Sec. III the p r o b  
ability of the occurrence of large cross sections is 
considered and the distribution function S(z) is intro- 
duced. Here, S(z) is tlie probability of the ratio of the 
actual and estimated cross sections being less than z. 
In  Sec. IV the capture cross-section distribution func- 
tion Sy(t) is obtained analytically within the model of 
equidistant resonances. In Sec. V the fluctuations of 
the level spacings are taken into account using the 
Monte Carlo method. Our results are compared with 
the data on resonance parameters and capture cross 
sections for 105 nuclei from Refs. 1 and 7. This 
comparison confirms the validity of t h  latter model. 
In  Sec. V we also consider the opposite case when 
the width of tlie exit  chaniiel obeys the Portet- 
Thomas distribution in the (11,a) reaction, the in- 
eIastic neutron acceleration by nuclear isomers, etc. 
The distribution functions, Sirr(:), similar to S,(z), is 
obtained using the same model. 

11. THE EXPECTET, VALUES OF THERMAL 
NEUTRON CROSS SECTFONS 

I!. A. Rasic Formillas 
The contribution of a single resonance with 

spin S, energy Lj, neutron width r,,i and the exit 
channel wid th  Fr;, to the rcactioii cross section is 
described by the Breit-WEpier formula as 

Here, 

E = incident neutron energy in the  labora- 

A and 1 2  atomic wejglit of t h e  tarpet nziclcus 

tory system 

a n d  its spin. 

'M. N, NIKOLAEV and V. V. FILIPPOV. Afoiiino,vo 

6L. B, LEVFTT, tVucl, Sci  h g , ,  49,450 {1972). 
'W. I1II.G et a)., NucL Vh,vs. A.  217, 76q (1973). 

Energia ( WSSR), 1 5,493 ( I  963 ). 

At thermal energy, E = ET E 0.0253 eV, only 
tlie s-resonances contribute to the cross section, 
Le., J = I ? f. The inequalities ET << El and Pi <<E;. 
are usually true, so that Eq. ( 1 ) turns into 

To estimate the cross-section value, let us repre- 
sent i t  as the sum of the independent resonance 
contributions under the following simplifying as- 
sumptions: 

1. All reaction widths are equal to the come- 
- sponding mean values (depending on J ) :  r,, = 

2. The energy spacings between the resonances 
with spin J are constant: 

3. The resonances are located symmetrically with 
respect t o  the zero neutron energy point: 

Using these assumptions, we come t o  the fol- 
lowing expression for the expected cross-section 
value 07, which should not be confused with the 
mean value E t :  

rr(n, rHj = F ; ( J ) ( E & ) * ' ~ ~  = 1 ev. 

- € j  = B(J). 

.Ei = z i ( J ) ( i  - +). 

Here, F:(J)  is the mean neutron width, reduced to 
E,  E I eV, and g ( J )  = ( 2 J  + 1)/[2(ZI .f l ) ]  is the 
statistical factor. The value of the sum in Eq. (33 is 
equal to 7r2/4 (see Eq. 0.234.2 in Ref. 8). 

11. E. TI1 L' E.vperted Valtrc of the Thermal Neutron 
Caprtrrc Cross Section 

- 
For the neutron capture reaction F , ( J )  = r,, 

there are two systems of resonances (with spins 
J ,  = I +- and J z  = I - 4) that give comparable 
cnntributioiis to the cross section. After substitution 
of the numerical factors corresponding t o  the thermal 
energy of the  incident neutron ( E  = ET),  we obtain 

Here, 

Y 
, i  ' i  

'1. S. GRADSTEIN and I. M .  RYJIK, Tables ofht~f lk  
Srrms, Serb and Produchfrr, 5th ed . 1  Nauka, Moscow ( I  97 1 ). 
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strength function for s-neutrons d2 so= --= 
Oexp 

Dexp(!) = average spacing between s-resonances 
of the target nucleus with the spin I ,  
which is connected with @J) by the 
equality De,,(/) = g( . f ) .D(J) .  

For I = 0, Eq. (4) is reduced to 

For example, let us estimate the capture cross 
section of thermal neutrons by the isomeric nucleus 
152mEu (1; = 3-, 1% = 0-, T~ = 17.9 yr. 7, = 13.4 h, 
E, = 0.05 MeV, from Ref. 9). Vertebny et d." 
ohtained for the ground I state o f  this nudeus So = 
C3.G -+ l.7_).1U4, rr = (0,160 2 0.025) eV, and 
&,{3) = (0.25 f 0.04) eV. The evaluation of Dsxp 
for the spin of 15zmE~1 using the Fermi gas model" 
gives De&) = 1.4 eV.  The values of So and I;, are 
spin independent. They shouid not change notice- 
ably while the excitation energy is shifted by the 
isomer energy E,,,. Assuming them to be actuaIly con- 
stant and using Eq. (4a), we obtain IT; = 1 .7.10J b. 

IJ. C The C:vpccrd Valric o,f [Ire I,"L'NA 
Th ETH i d  Neir I Y ~  Cross Sect io 17 

We now consider the TNNA reaction that is 
possible when tlie neutron collides with the isomeric 
nucle~is.~ As a result of the INNA reaction, the 
rmitted neutron carries away the isomeric transition 
energy E,. Here, we consider only the magnetic-type 
isomers. In  this case, the cross section is determined 
only by the system of resonances with spin corre- 
spoiidiiig to  the lowest inanzentum of the emitted 
neutron. if we replace F, hy  'jiln(e,,,) -.. and take into 
account the approximate relation E'(, [em)/7: z 
T ~ ~ ( E ~ ) / T ~ ( L ' ~ )  (here, Tfj(c')  is the transinission cocf- 
Iicient for neutrons with the eilcsgy E,  tlie orbital 
momentum I ,  aid the total mornenturn j that  are 
allowed by the selcc tion niles of the transition 1, wc 
have instead o f  ELI. (4), 

The transmission coefficients TI, can be calculated 
usinl: thc optical model. 

Let LIS use Eq. ( 5 )  to estinlate the INNA thermal 
neutron cross sections for M4 isemcrs B"''Sr, 1'3'nIn, 
""'9n, and r23''tTe. The important paint here is the. 
choice of rcslsonable parameters for the  optical 

potential. In our earlier paper'* we chose these 
parameters following the idea of the SPRT method 
by Lagrange.13*'" The imaginary part af the po- 
tentiai W was obtained by fitting the strength 
function So, while other parameters were nearly 
those obtained by Lagrange for 89Y and g3Nb. The 
strength function St, the potential scattering radius 
R', and the total cross section o l ( E )  were in rea- 
sonable agreement with the experimental 
[within 20% for SI and 10% for both R' and at(E)l. 
This allowed us to describe the INNA cross section 
for in the incident neutron-energy interval 
0.02 to 0.3 MeV to an accuracy of -20%. If we 
obtain the v a l u e  of W for 87mSr, I ' 3 m X ~ ,  and '23mTe 
in the same way, we arrive at ut, as listed in Table I. 

This table shows that INNA cross sections, as a 
function of the isomer energy and of the strength 
firnction, can differ by orders af magnitude in spite 
of similar selection mles of the transition (M43. In 
particular '23mTe must have a very small INNA crass 
section. The experimental limit olrr G 20 mb estab- 
Iished by Hamemesh'' does not contradict OUT 
estimate. 

Ilk. THE PKORABILJTY OF THE APPEARANCE 
OF LARGE CROSS SECTlONS 

\Ye n o w  consider the distribution of the actual 
cross sections IT about their expected values Q*. If 
we introduce the variable 2 = o]o* and consider it 
as random, we can define the probability density 
of z, &z), and the distribution function S(z) a3 

Here, S(r) is tlie probability that the ratio of the 
actual cross section to the expected one docs not 
exceed 1. 

Let LIS suppose that some resonance is located 
occasjonully quite near zero energy. Then the cross 
section i s  determined mainly by the parameters of 
this resonance and its actual value may greatly 
exceed tho uxpecrerl one. Thus, for latgc z the. 

12YU. V. PETROV and A.  I. SIILYAKHTER, NucI. 

I3Ct1. LAGKANGE, in Sroc. Third SOY. Ndl .  Conf. on 
Nc~rrron Sh~&s, Kiev, May 26-30, 1975, CONF 750555, 
3,65, Moscow (1976). 

''1, P. IIELAROCtlE, Cli .  LAGRANGE, and J. SALVY, 
C'onrdtanh ' M F ~ .  Ni~cktr Theop in Nciitron Nuclear Data 
Evohiarion, IAEA-190, 1, 25 1 International Atomic Energy 
Agency (1976). 

'5D. I. GAKBER and K. R. KINSEY, "Neutron Cruss 
Sections," HNL-325, 3rd cd., Vol. 2% Brookhaven National 
Labtiratury ( 1  $76). 

P;~YS. A ,292, g a  (1977). 

leg. HAMERMESH, Phys. Rev. C, 10,2397 (1974). 
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TABLE I 

Expected INNA Thermf Neutron Cross Sections 

i 

'1 

I 

Note: Other parameters of the optical potential are those from Ref, 12. The values of V and W depend slightly on the incident 
neutron energy: P = 49.5 - 0.28E (MeV), NJ = W, + 0.3E (MeV). 

asymptotic behavior of P ( z )  and S(z) is completely 
determined by the nearest resonance contribution 
and we can use the single level approximation. Taking 
into account Eqs. (2) and (33, we obtain for I = 0 

Here, I E r;JF;, I I  c,/F:, and u g  e ( E ,  - E,) /B 
are, respectively, the reduced width of the first 
positive resonance and i t s  spacing From the first 
negative level normalized to the corresponding mean 
values: .Y 5 -(Eo + E,)/D- 

1II.R. Probabilitjg Distrihrtiom o,f rhc 
R PSO Manre Param etcrs 

Within the framework o f  the statistical model, 
the fluctuatioiis of the  reduced widths are described 
by X 2 ( v )  distribution. The number of degrees-of- 
freedom v is equal to the number of final states For 
the reaction considered. 

There are only s-neutrons in the  entrance clianncl: 
hence, v = J and the reduced neutron width shouBrl 
follow t h e  Porter-Thomas distrihution": 

The distribution of the reduced widths i n  the  
exit channel is determined by the type of the 
reaction. For radiative capture, there are a great 
number of final states. Hence, Y >> 1 aiid the 
X 2 ( u )  distribution is reduced to the delta function 
and one must pu t  zi = 1 .  In the opposite case, the 
compound iiucleus decays into a siiigle final state. 
Examples are the INNA reaction (the outgoing 
neutron has the lowest angular mllmentum allowed 
by the selection mles) and the (WE) reaction ( the  
compound iiucleus decays preferably to the lowest 
level allowed). I n  the latter case, the Porter-Thomas 
distrihution Eq. (8) n g e e s  with the existing d a t a 2  

The fluctuations of the energy spacings between 
the neighboring levels with a given spin are usually 
described by a Wigner distribution" as 

( 4" 9 x P,(v,)  = - 2 V i '  exp - - v i  . (93 

Here, U~ L ( E i + l  - E i ) / 6 .  

positive resonance is determined by the difference 
( uo  - . ~ ) / 2 .  I t  depends on the distribution of the 
incident neutron zero energy point on the scale 
of compound nucleus levels. It  seems natural to 
suppose that the latter distribution is uniform. The 
total probability of finding the zero neutron energy 
i n  a given interval is proportional to its width ug. The 
density function of the variable .x is normalized to 
uo (due to the symmetry, one may consider only 
positive values of x): 

The distribution of the energy of the first ~ 

P&)= I , OGX . (101 
The validity of this density function is confirmed by 
the comparison of the theoretical distribution of the 
first resonance position with the available data  
(see Fig. 1 aiid Appendix A). 

111. C Pisti-ii!m[io/i Fz:rrnrtions in rhe SSlngle 
Le vel A pprox inw lion 

We iiow use the single level approximation to 
calculate the function S(Z) far a neutron radiative I 
capture reaction taking into account the distributions I 

of Eqs. (81, (91, and (IO). Denoting i t  by Sy(z) we: 
have 

I 



I " " " " "  " 
I 1 ' 1 f l '  

1 P(w) = - w )  

4 

Resonance energy in units of w = E,/D 

Fig, 1. The distribution Qf the first resonance energy (in 
units uf w I 14;/D) with (solid line) and without (dashed line) 
the Wigner distrihution o f  E q .  (9). 

Here, OLi-) = 1 ,  if .Y 3 0;  otherwise B( .u)  = 0. Inte- 
crating overs we come l~ 

! t.valuation of this integral finally Fives 
I 
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Fig. 2 ,  The capture cross-section distribution function 
S$"'(z) for zero spin nuclei with (solid line) and without 
(dashed line) the Wigner distribution of Eq. (9). Here, k is the 
number of  resonances considered. In the case where k = 400, 
the Monte Carlo method was used. 

The validity of the latter statement is illustrated 
in Fig. I where the distribution of  the position of the 
first resonance (measured in  I V  E El/D units) with 
(solid line) and without (dashed line) Wigner dis 
tributjoiis Eq. ( 9 )  is shown. At small w ,  the density 
functioii P(w) does not depend on tlie model 
clioseii. l t  means that  at 2 >> 1 the cross-section 
value is comp\etelp dctermined by the parameters 
of thc nearest resonance and CIQH not depend on 
the posi tioiis o f  the  other resonances. 

The siiigle level approximation can also be used 
to obtain the functioii !$,!,'(z) for the INNA and 
the (n.a') reaction by substi tudng  a Porter-Thomas 
distrihution Eq. (8) instead of p&) in Eq. ( 1  1). 
However. the result appears to be cumbersome and 
is not repmrlucetl here (see case 1; = 1 i n  Fig. 3 and 

1 

Fig. 3 .  The thernral INNA [as well as ( n , ~ ) ,  etc.] reaction 
cross-section distribution function S;:'(Z) with (solid line) and 
without (dashed line) the Wigner distribution o f  Eq. (9). Mere, 
k is the number of resonances considered. In the c a ~ e  where 
k = 400, the Monte Carlo method was used. 
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0 

0.001 
0,002 
0.003 

Ref. 18). The asymptotic formula at large z can be 
obtained in the same way as Eq. (14) 

[ I  :? 

o.001 
0.001- 
0.004 

(15) 
I t  differs fmm Eq. (14) hy an adriitjoiial factor 
(2 / i~ ) ' ' ' ~  arising from the averaging of the width 
fluctuations in the exit channel. 

[ [ I .  D. Uisr1rss ion 
It follows from Eqs. (143 and (15) that the 

probability of large cross-section occurrence is not 
small and with the increase in : it decreases rather 
slowly (see Table I1 and Figs. 2 and 3 ) .  The therinal- 
capture cross sectjoii can exceed the expected value 
by more than 100 times with a probability of 5%. 
Almost 1% of the n u d e j  have capture cross sections 
that exceed their estimated values by more than a 
factor of 3 ,  IO3. Thus, the exjsteircc of a number  of 
strong absorbers i s  not surprising. 

The probability of large INNA cross sections 
occurring is slightly smaller (by 20%) but still 

'8YyV. V. PETlIOY and A. I .  SHLYAKIITER, Preprint 

"The detaits of numerical calculations can bc found in 
LNPI-456, Leningrad (1979) (in Russian'). 

Ref. 18. 

Z 

0.03 
0.04 
0 -05 
0.06 
0.01 
0.08 

a .09 
0.10 
0.12 
0.14 
0.16 
0.18 

0.20 
0.25 
0.30 
0.35 
0.40 
0.45 

0.006 
0.010 
0.020 
0.032 

0.062 

0.079 
0.12 

0.14 
0.27 

noticeable. For example H a m e m e ~ h ' ~  made an at- 
tempt to measure the lNNA thermal neutron cross 
section for '23"2Te. The accuracy achieved was an 
order of magnitude less than that required (see 
Sec. 1I.C). However there existed a considerable 
probability (-13%) of measuring the effect; unfor- 
tunately it was not the case. 

Let us note in conclusion that for very large z, 
the asymptotic formulas, Eqs. ( I  43 and ( I  51, should 
fail. This is due to the vioiation of the condition 
r: << 4(EI - Er12 that altowed us to reduce Eq. (1) 
to Eq. 12). The. corrections become; simificant at 
z * D2/2P2, which is usually large. 

L 

1V. DISTRIBUTJDN OF THE CAPTURE CROSS 

EQUlDlSTANT RESONANCES 
SECTIONS IN THE MODEL OF 

Id'. A. Zero Spin of the Targer Nucleus 
As the nearest resonance is removed from zero 

neutron energy, i ts contribution to the cross section 
diminishes and m e  should take into account other 
resonances. We obtain the function S,(z) within the 
framework of the following simple model. We sup 
pose that the s-resonances form an equidistant system 
clisplacecl an amount  B on the energy axis. Thus, 
we replace the Wigner distribution Eq. (9) by 

TABLE l i  

The Distribution Functions S&) and Si,,(z) 

0.006 
0.009 
0.01 7 
0.028 
0.040 
0.054 

0.070 
0.1 1 
0.1 4 
0.18 
0.22 
0.25 

m 

0 .oo 1 
0.003 
O.OC4 

O.QQh 
0.010 
0.02a 
0.031, 
0.047 
0.06 3 

0.08 1 
0.12 
0.1 7 
0.20 
0.24 
0.27 

&&la 

0.0006 
Q ,003 
0.007 
0.015 
0.024 
0.035 

0.046 
0.054 
0.08 5 
0.1 1 
0.14 
0.16 

0.19 
0.24 
0.28 
0.32 
0.36 
0.39 

z 
0.50 
0.60 
0.70 
0.80 
0.90 
1 .o 
1 .s 
2 .o 
2.5 
3 .o 
3.5 
4 .O 
4.5 
5 .o 

10.0 
20 .0 
50.0 

1 00.0 

0 

0.27 
0.32 
0.37 
0.40 
0.43 
0.46 

0.56 
0.62 
0.66 
0.69 
0,72 
0.74 

0.75 
0.77 
0.83 
0.88 
0.93 
0.95 

S,@) 

1112 

0.30 
0.35 
0.39 
0.42 
0.45 
0.48 

0.58 
0.63 
0.67 
0.70 
0.72 
0.74 

0.76 
0.77 
0.83 
0.gS 
0.93 
0.95 

W 

0.30 
0.35 
0.40 
5.43 
0.46 
0.49 

0.58 
0.63 
0.67 
0.70 
0.72 
0.74 
0.76 
0 -77 
0.83 
0.88 
0.93 
0.95 

Si&) 

0 -42 
0.46 
0.50 
0.53 
0.55 
0.5 3 

0.65 
0.70 
0.73 
0.75 
0.77 
0.79 

0.80 
0.8 1 
0.87 
0.91 
0.94 
0.96 

- 

d 

'The distribution functions S,@) and S,,,(z) were calculated by the Monte Carlo method (Ref. 19). The contributions I 

positive and 200 negative nearest resonances to the cross section were taken into account, For the calculation of each fUnctjon, 1 
Io" sample CT(ISS sections were generated. 
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The energy of the i'th resonance is 

= :.(2i - 1 - x) 

It is inconvenient to use Eqs. (22) and (23) at 
small z. After developing the arc tangent in Eq. (20) 
as a power series in exp[-(2q)'''l and inverting 
each term, we: obtain 

(17) 

(in the notations of Stc. 111). Here, E is an integer 

The contribution of the i'th resonance to the 

and x is the random variable, distributed uniformly 3/2 - (2n 4- 1)2 

in the interval 0 4 .Y Q 1. P,c~)  = (&) * n=o (-l)n-exp[- 22 1 . (245 

cross section is 

We calcuFate the probabiIity density function 
using the Porter-Thomas distribution for the reduced 
neutron widths and neglecting the multilevel intcr- 
ference phenomena, and the fluctuations of the 
radiation widths (these are the usual approxima- 
tjons29 

Here, ,vi are those defined in Eq. ( 18). The expression 
for the Laplace transform of the function P J z )  is 

(20) iy,(ql= 5 arctg expt-(2y)1'21 . 

Equation (20) is derived in Appendix B. I t  leads to 

4 

' 

' For small q lying within the circle lql < lr218, T-,(L]) 
can be developed as a series in 12q)"ar The inversian 
of each of its terms gives 11s the asymptotic expansion I 

I fot large I: 

1 

1 9.72in Ref. 8). Hence, 

Here, E?,, are the Euler numbers Eo = I ,  = -1, 
E ,  = 5 ,  L6 = -61, E8 = 1385. , . (set Secs, 9.63 and 

i 
j 1 52,382(19731. 

 his expression gives the accuracy of the single 
level approximation of Eq. (14). 

"G. de SAUSSVRE and R. B. PEREZ, Nucl. Sci. Eng., 

This series converges rapidly for small z and the 
following approximation has an accuracy of better 
than 2% up to z = 1 : 

(24a) 

The fast decreasaof P&) at z + 0 is due to  the 
fact that z can become small only if the widths of 
the large number of resonances become small simul- 
taneously. The frinction Eq. (24a) reaches its maxi- 
mum value at z m  = +, i s . ,  P,{z,) = 0.589. The plot 
of the function P J z )  is shown in Fig. 4. After 
integration of Eq. (24) from zero to E ,  we obtain 
the expression for SJz), which is convenient a t  
small z: 

Hence, 

The function SJ t )  is shown in Fig. 2. As was 
expected, it differs significantly from the single level 
approximation used in Sec, III at small z. 

N - -L n 
c' 1.5 
0 
0 c 
3 + 
> 
(n 
C 
u 
-0 
> 

.- 
e 

v 1.0 

4- .- ; 0.5 
e a 

1 .Q 2.0 3.0 4.0 

Fig. 4. The probability density functions PJz) andPi&) 
for thermal neutron cross sections with (solid h e ,  the Monte 
Carlo calculation) and without (dashed line) the W i p e r  dip 
tribution of Eq. (9). 
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IF/. R. Arbitrary Spin 0.f tire Target Nucleus 

It is convenient to take the expected capture 
cross section for I = 0 [Eg. (4a)l as a w i t .  The 
coritrjbutions of the systems of equidistant res+ 
iiances with the spins J ,  = ( I  + 4) and J 2  = (I - 4) are 
propbrtional to g: = (/ i- I ) ’ / (Y + U2 and gi = 1’1 
( 7 1  + I )’, respectively. 

Assuming both systems to be independent, we 
have for the Laplace transform of the distribution 
function 

x exp [-g2( ? L ~ I ’ ’ ~ I  . (76) 

Equation (35) is d e r i v e d  in Appendix R. We 
develop arctg I exp! -gK(3_q)L’2]l as a power series in 
e x ~ [ - g ~ ( 2 q ) ” ~ ] ( k  = 1 ,  1) and invert it term by tcmi 
just  as i n  the case of I = 0: 

. (17) 

This expression is convenient a t  small :. For : << 1 
we have 

3 3rr + l}g1 + ( 3 7  - 2 m  + I ) g 1  x t l - f c [ ~  ( 37)‘ I 2  

The comparison of Eqs. (27? a n d  (27a) shnws that 
spin causes the appcnrance o f  the prc-exponential 
factor 4/71 = I ,  27.  

I n  the opposite cast ( l a ry  z’r the  ~~l lowi r rg  
expression is valid for  P7(z) .  

Unlike the expansions (21) and (731, which are 
exactly equal to Eqs. (24) sliicl (2.51, Eqs. (28) and 
(39) are valid only at 2 >> 8gzln’ with the exponen- 
tial accuracy, 

Comparison of Eqs. (29) and ( 2 3 )  show that  the 
spin influence appears only in the secoiid term of 
the  expansion as 

(2%) 
and a t  large z the spin corrcctions are small. Thus, 
in the rnodel of equidistant resonances, a small 
correction at large z and a factor 1.27 a t  small z 
appear to be due to spin. The direct calculation 
shows that the influence of spin is small at all z .  
A more accurate treatment confirms this conclusion 
(see Sec. V). 

* V. THE INFLUENCE OF THE LEVEL 
SPACING FLUCTU ATlONS 

V. A. The Capture Reaction 
The fluctuations of the level spacings change the 

distribution of the cross sections. As was shown in 
Sec. I11 at  z >> 1, these fluctuations do not influence 
the asymptotics of S7(z). In the region t << 1, the 
cross section is determined by the parameters of 
many resonances. Therefore, there is a possibility 
that  the cross section will decrease due to the. 
increase of the level spacings. This effect slows the 
rapid decrease of SJz). The exact analytical solution 
was not  obtained in this case. However, the direct 
Monte Carlo simulation of the cross sections by 
means of a computer proved sufficient. Figure 2 
shews the functions SJz) For J 0 that were 
calculated with (solid line) and without (dashed 
h e )  the Wigner distribution of the Ievel spacings. 
Apparen try the accuracy of the model of equidistant 
resouances decreases quickly while z + 0. 

The influence of the level spacings fluctuations 
on the fiinction P J z )  a t  z 5 1 is shown i n  Fig. 4. 
This function reaches its upper limit a t  z = 2,; here, 
ils, is -1.5 times less than in the model of equidistant 
resonances while the  maximum value is higher. Thus, 
the most probable capture cross section is almost 
one-fifth the expectcd value, o;, calculated using 
Eq. (4a). (’The scatter of paints due to the Monte 
Carlo calculation prevents the exact determination 
of Tm.) 

The probability of very  small values of z is 
neyli@ble (see Figs. 2 and 4 and Table IT): S,(z) < 

a t  : ,< 0.05. So, ~ i i e  can neglect the probability 
of the  cross section being 20 (or more) times less 
than 5; and thus can establish the lower limit on 
possible: valties of uy. 

V. B I N N A  Rearrioa 

Here, we consider the case of the compQURd 
iiucleus decay into a single find state. N o w  the 
wirlths of both the initial and final channel obey 
the Porter-Thomas distribntion [ INNA reaction, 
( r ~ . c y S ,  etc.]. We calculated the function Pin(z) taking 
i n  to account the Wigner distribution. The Monte 
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Carlo method was used. The resr~lts are shown in 
Fig. 4. The upper limit of f i n ( - . )  is considerably 
lipher and it is shifted to the left compared to 
P,(z). The most probable cross-section value appears 
to be about eight times less than urn within the 
accuracy of the calculation. 

The influence of the level spacings fluctuations 
can be seen in  Fig. 3 where thc functions Si,,Cz) 
calculated with and without the Wigner distribution 
are shown. This influence appears to be less impor- 
tant than in the case of S,(r) (see Fig. 7). 

The probability of small z is considerably greater 
for the INNA reaction than for capture as one can 
see in Fig. 4 and Table 11. IJowever, the vaIues less 
than z = 0.03 are hardly probable and one can adopt 
i t  as a lower limit of z .  

L'.f The Dnla A ~ t a l j ~ s i s  

The calculated values o f  S,(z) are compared wi th  
data En FiF. 5. We have already noted that the 
calculated curves at the  taryet nucleus spin values 
1 = 0 and I + 0 are close to one another. The 
influence of spin is less tliaii i n  the model o f  
equidistant resonances. The difference between SJz) 
Tor 1 = 4 and I = w i s  not more than  the thickness of 
the curve I f 0 (see also Table 

We have included in the data set the nuclei for 
which both the tlicrma1 neutron capture cross sec- 
tiotis and the parameters of several lowest s-reso- 
nances were known. I-laving the ratio zcXp = urcup/u,* 

i ror eacti nucIeus, one can plot a Iiistogram fur 
Syekp(z). Such a histogram based on the data for 

1 105 nuclei 45 < d < 1-40 (41 nuclei have zero spin) 
I From Refs. 1 and 7 is shown in Fig. 5 .  All thc nuclei 

(not fjssioitable i n  the thermal recion), for which 
~ the parameters in Eq. (4a) cnulrl be determined 

reliably enough, were included, 1 The agreetnent between our calculations and the 

I 

I 

0.8. 

0.6- 

0.4 ' 
1 

z = o h *  

Fig. 5. Coniparison of the calculated distribution func- 
~ W S  Sy(z> (depending on the target nucleus spin I )  with the 
%+"(tal data from Refs. 1 and 7. The data set includes 

nuclei with 45 Q A G 240. 

experimental data is quite satisfactory. In the region 
z >> 2 ,  it confirms the purely random distribution 
of the zero neutron energy on the scale of nuclear 
levels. The agreement in asymptotic behavior also 
confirms the validity of the Porter-Thomas distribu- 
tion Eq. (8) [see the discussion of Eq. (14) in 
Sec. 1111. At z 5 1 the agreement with the data can 
be reached by taking into account only the latter 
distribution and the one of Wigner, Eq. (93. Within 
the accuracy of the data available, one can neglect 
possible deviations from these purely statistical d i s  
tributioiis as well as the possible multilevel inter- 
ference phenomena. 

There are no experimental data to verify the 
fiinction S&). However, it was obtained within the 
same model. The interference phenomena can appear 
to be more important in this case.20 Nevertheless, 
we can recommend it for estimating the probability 
of the considerable deviations of thermal INNA cross 
sections [as well as etc.] from their expected 
v al u e s . 
I f .  D. ConcIirsion 

I t  appears convenient to consider actual tltermal 
neutron cross sections as random variables distributed 
about their estimated values. Equations (4a) and IS), 
taken with the corresponding distribution functions 
(see F i~s .  3 and 5 and TahEe II), allow prediction of 
the probability of various cross-section values, 

The probability of small values of z oexP/u* is 
cxponeiitially small. Thus, the Sower limit of the 
possible cross-section values can be established reli- 
ably enough. On the other hand, the probability of 
the occurrence of the cross sections by orders of 
mayiitude exceeding their expected values is notice- 
able. 

The agreement of the calculated distribution 
function for capture SJz) with the experimental 
data (see Fig. 5 )  indicates that the statistical approach 
can be used both for resonance parameters and 
t'hertnal cross sections. This seems to be an indepen- 
dent  confirmation of the statistical model. 

APPENDIX A 

In this Appendix we verify the hypothesis that 
the zero energy of the incident neutron is located 
i n  a purely random way with respect to the com- 
pound nucleus levels scale. 

In the statistical model, it is generally assumed 
that the  levels of the excited nucleus are scattered 
near the neutron emission threshold in such a way 
that spacings bet ween the  neighboring resonances 
obey the Wigner distribution, Eq. (9) .  If the neutron 
zero energy can enter any point of the energy scale 
with equal probability, then the chance tu enter a 
given intervat is proportional to its width ug. Inside 
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this interval, the  zero neutron energy is distributed 
with uniform probability and P&) = #, being inde- 
pendent on the first negative level position. The 
distribution Po(x) is still normalized to vo, but unlike 
Eq. ( 10) the possibility of I variation in both 
directions must be considered ( -uo 4 . r  G uo) .  

first resonance position 
mined by the difference of the two independent 

P&) distributions. Hence, 

4 :  P J z )  can be represented as 

[ 1 - df i  ' p p - T  1 ti) PJZ)  = J1 d.Y fi 3 0 j m - m  

00 

Let us obtain the probability density of the X6[Z - v,.(ri.;l . @* 1) 
= (vg - s ) / 2 .  I t  is deter- f'= -0c) 

random numbers u O  and forlowing p!$(uO) and Carrying aut the Laplace t r ans format ion  and 
changing the order of integrations, we obtain 

X 6 ( w - ~ ) = e e x p ( - ~ i s 2 )  I , {A. I )  

The Pt(zv) distribution was obtained in 1968 by 
Lynn2' in connection with the problem of the 
possible nonstatistical effect i n  the distribution of 
the  neutron ernission thresholds. Lynn compared 
the  P l ( w )  distribution with the  data and  satisfactory 
agreement was found. Since the new data appeared 
during the last years, it seems reasonable to repeat 
the comparison with the improved statistics. 

All the nuclei with known spin of the first- 
resonance and mean spacing between the s-reso- 
nances',' were included in o w  analysis. The level 
systems with J ,  = 1 + 4 and .I, = I - 3 were analyzed 
independently. The final data set contained 206 
points (instead of the 60 points in Ref. 21). 

The experimental histogram is shown in Fie. 1. 
The probability densities P(w> were calculated both 
with (soIid line) and without (dashed line) the 
Wigner distribution. The good agreement of the 
Lynn distribution with the experiment confirms the 
hypothesis on the random rlistribu tion of the inci- 
dent neutron zero energy with respect to the com- 
pound nudeus levels. 

I n  the region of small IC, the Nigncr distribution 
does not change the result obtained i n  the inoclel of 
equidistant resonances no ticeabiy, t h e  differelice 
becoming significant only at II' a I .  The existing 
a g r e m e n t  of PL(w)  distribution with thc data gives 
an additional support to the Wigner distribution of 
Eq. (9) .  I t  should be cimphasizetl that tierr. t l ic 
statistical approach was appIied to the totality of 
the  resoiiances of  many nuclei, not of a single 
nucleizs. 

APPENDIX R 

CB. 2) 
Calculating the inner integrals and taking into ac- 
count Eqs. 183 and ( I  8), we obtain 

(B.3). 
For this infinite product, the following formula is I 

valid (see Eq. 1.438 i n  Ref. 8): 

IB.4) 
Substituting Eq. (B.4)  into Eq. ('B.3) and integrating 
over x, we obtain finally the Laplace transforms of 
P J z )  and ST(?): 

Fy(;(ri) = 4 + arctg exp1- (~ )"21  

(B.5) 

In the case of the arbitrary spin of the target 
nucleus, the contribution of the i'th resonance 
belonging to the k'th system differs from Eq. (18) 
by the factorgi: 

k = 1, 2 . (B.6) - 2  4 fi 
Y i K  - gK - - 

i? (2i - I - X ) Y  ' 

Assuming both systems to be independent we haw 
LAPLACE TRANSFORM OF THE ElENCTION S,lz) instead of Eq. ), 
IN THE M'JDEL OF E0UIDlSTANT RESONANCES 

Let us consider the target nucIcus with zcro " J .  E. LYNN, The Theoty of Neurron Resononce 
spin 1. 111 accordance with Jq. 1 I9), the function Reactions. Oxrourd (1968). 
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Note Added in Proof: After this work was com- 
pleted, we learned about the paper by Cook and 

They used data on the position of the first 
resonance and Monte Carlo method for generating 
probability djstributions of thermal capture cross 
sections around estimated values. No exact analytical 
solution was obtained. 

P,(z) {I I d.T, ,'-M ,fi [ ~ w d f i . p ~ - ~ ( ~ i )  I1  
]=-m 31 x { i l  d.r,. fi [ J ~ ~ ~ j * ~ ~ - ~ ( ~ j )  

W m 

X6[2-  J ' f d i ( f i r ) -  ~ ~ i d s ( t / , ) l  - (B.7) 
i'=-co ['= -00 

Just as i n  the case / = 0, we obtain 
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