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The Expected Value of Information and the Probability

of Surprise

James K. Hammitt' and Alexander 1. Shlyakhter’

Risk assessors attempting to use probabilistic approaches to describe uncertainty often find
themselves in a data-sparse situation: available data are only partially relevant to the parame-
ter of interest, so one needs to adjust empirical distributions, use explicit judgmental distribu-
tions, or collect new data. In determining whether or not to collect additional data, whether
by measurement or by elicitation of experts, it is useful to consider the expected value of
the additional information. The expected value of information depends on the prior distribu-
tion used to represent current information; if the prior distribution is too narrow, in many
risk-analytic cases the calculated expected value of information will be biased downward.
The well-documented tendency toward overconfidence, including the neglect of potential
surprise, suggests this bias may be substantial. We examine the expected value of information,
including the role of surprise, test for bias in estimating the expected value of information,
and suggest procedures to guard against overconfidence and underestimation of the expected
value of information when developing prior distributions and when combining distributions
obtained from multiple experts. The methods are illustrated with applications to potential
carcinogens in food, commercial energy demand, and global climate change.

KEY WORDS: Probability; uncertainty; data; risk assessment.

1. INTRODUCTION

Risk assessors attempting to use probabilistic
approaches to describe uncertainty often find them-
selves in a data-sparse situation: available data are
only partially relevant to the parameter of interest,
so one needs to adjust empirical distributions, use
explicit judgmental distributions, or collect new data.
In determining whether or not to collect additional
data, whether by measurement or elicitation of ex-
perts, it is useful to consider the expected value of
the information (Raiffa, 1968; National Risk Council,
1996; Presidential/Congressional Commission on
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Risk Assessment and Risk Management, 1997). The
expected value of information depends on the prior
distribution used to represent current information. If
the prior distribution is too narrow, the calculated
expected value of information will be biased; in cases
of interest to risk analysts, the bias is likely to be
downward. The well-documented tendency toward
overconfidence (Kahneman et al, 1982; Morgan and
Henrion, 1990), including the neglect of potential
surprise, suggests this bias may be important. This
paper examines the expected value of information
and suggests procedures to guard against overconfi-
dence and underestimation of the expected value
of information.

The word ‘‘uncertainty” is often used without
formal definition. Unless otherwise noted, the term
will be used here in the sense defined by Rothschild
and Stiglitz (1970). Their concept applies to distribu-
tions with equal expected values and can be expressed
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using any of three mutually equivalent definitions: a
random variable y is more uncertain than another
random variable z if: (a) y is equal to z plus random
noise, (b) every risk averter prefers a gamble with
payoffs equal to z to one with payoffs equal to y, or
(c) the density of y can be obtained from the density
of z by shifting weight to the tails through a series
of mean-preserving spreads. The Rothschild-Stiglitz
definition is equivalent to the ordering imposed by
second-order stochastic dominance (e.g., Huang and
Litzenberger, 1988). The Rothschild-Stiglitz defini-
tion provides only a partial ordering over distri-
butions; it is possible that neither one of a pair of
distributions expresses more uncertainty. Moreover,
although a distribution that represents greater uncer-
tainty has a larger variance, a distribution with a
larger variance need not represent greater uncer-
tainty.

The paper is organized as follows. Empirical evi-
dence of overconfidence in probability assessment
and alternative distributional forms that better incor-
porate the probability of surprise are reviewed in the
Sect. 2. Section 3 examines some effects of the prior
distribution on the expected value of information
(EVI), including the tendency for overconfidence to
bias calculations of EVI downward, and illustrates
this effect in the context of commercial energy projec-
tions. Section 4 describes four heuristic factors that
influence the expected value of information and illus-
trates their effect with an example of a potentially
carcinogenic food additive. In Sect. 5, alternative
methods for combining distributions representing ex-
pert judgment or other data are reviewed and their
results compared using expert judgment about global
climate change. Conclusions are presented in Sect. 6.

2. EVIDENCE AND MODELING
OF OVERCONFIDENCE

The importance of incorporating surprise into
uncertainty modeling and analysis stems from the
well-documented tendency of both experts and lay
people to underestimate uncertainty in their knowl-
edge of quantitative information. When asked to con-
struct prior distributions for quantities that can be
verified, subject matter experts and lay people often
produce distributions that are far too tight. Typical
results find 55-75% of true values outside subjective
interquartile ranges and 20-45% outside central 98%
confidence regions (Alpert and Raiffa, 1982; Lich-
tenstein et al., 1982; Morgan and Henrion, 1990).
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Henrion and Fischhoff (1986) examined the
history of measurements of fundamental physical
constants (e.g., the speed of light). New and more
precise measurements are often outside the reported
error bars of the old measurements. To quantify
the extent to which subsequent measurements de-
part from the distributions implied by previous
measurements, Henrion and Fischhoff introduced
the Surprise Index (SI), defined as the fraction of
new results falling more than 2.3 times the (old)
reported standard deviation from the old result. If
new measurements were randomly drawn from a
normal distribution with mean and standard devia-
tion equal to the old values, the SI would be 2%.
Analysis of physical measurements suggests the SI
varies between about 10 and 40% (Henrion and
Fischhoff, 1986).

In some fields, experts have been shown to pro-
vide relatively well-calibrated probability judgments.
The classic example is meteorology, where forecasts
of precipitation probabilities and of maximum and
minimum daily temperatures have been shown to be
well calibrated (Murphy and Winkler, 1977). Mete-
orologists benefit from experience in forecasting
probabilities for a large number of similar events and
receiving rapid feedback. More recently, Winkler and
Poses (1993) have shown that physicians’ estimates
of patient survival probabilities are reasonably well-
calibrated, even though physicians do not routinely
provide quantitative survival probabilities. In con-
trast, financial analysts have been shown to signifi-
cantly overestimate corporate earnings growth
(Chatfield et al., 1989; Dechow and Sloan, 1997). In
one of the few studies evaluating calibration in risk
analysis, Hawkins and Evans (1989) found that indus-
trial hygenists provided reasonably accurate esti-
mates of the mean and 90th percentile of a distribu-
tion of personal exposure to chemical industry
workers, although they substantially overestimated
median exposure.

Shlyakhter (1994) and Shlyakhter et al. (1994)
analyzed several large historical datasets of physical
measurements, population, and energy projections.
They concluded that empirical distributions of mea-
surement and forecast errors have much longer tails
than can be described by a normal distribution and
proposed a “‘compound” distribution that provides
a more accurate description. Define the normalized
error x as the difference between the new (or true)
value and the old (or forecast) value scaled by the
reported standard deviation of the old value (i.e.,
x = (y1 — yo)/A’, where y, and y, are the new (realized)



Information and the Probability of Surprise

and old (forecast) values, respectively, and A’ is the
reported standard deviation of the old value). As-
sume x is normally distributed with standard devia-
tion A, but that the standard deviation is incorrectly
assessed as A’ (= A) because of overconfidence. De-
note the extent of overconfidence by t = A/A’, and
model it as randomly distributed with density func-
tion f(¢). The density function for x is then

p(x) = % f:@ Py @)

Shlyakhter (1994) proposed modeling f(¢) using a
half-normal distribution with mode equal to one,

f(n= \/%iewl)z/zuz], t>1 )
f=0

Values of ¢+ < 1 represent underconfidence and are
assigned zero probability. Substituting Eq. (2) into

(1) and integrating yields the cumulative probability
of deviations exceeding |x|

2 1 © N2 2 |x|
= == [(t=1)7/2u7]
S \/;ufl ¢ erfe <t\/§> dt

where erfc is the complementary error function

otherwise.

erfe(z) =1— \%ﬁ) et dé

The parameter u is a measure of the uncertainty
of the ratio f of “true” to assessed standard deviation
(Eqg. 2). It may be loosely interpreted as the ratio of
unsuspected errors to those that are accounted for.
Note that for u = 0, f(t) is a degenerate distribution
with probability mass one assigned to ¢t = 1 and the
compound distribution (Eq. 1) reduces to the nor-
mal distribution.

As illustrated in Fig. 1, the tails of the compound
distribution are much heavier than those of the nor-
mal distribution. For example, the probability as-
signed to values more than two assessed standard
deviations from the mean increases from 0.05 under
the normal distribution (¢ = 0) to about 0.25 for
u = 1 and to almost 0.5 for u = 3. Comparison of
prior and subsequent measurements suggests that for
physical and environmental measurements u ~ 1 and
for projections of population growth and energy con-
sumption u =~ 3 (Shlyakhter, 1994; Shlyakhter et
al., 1994).

The compound distribution provides a reason-
able description of empirical error frequencies in the
domains to which it has been applied. In future work,

137

it would be valuable to examine alternative distribu-
tions to determine if better fits to empirical error
distributions can be obtained, and if so, under what
circumstances. Among the alternatives to consider
would be alternative forms for the prior distribution
of t (Eq. 2). Alternative priors might allow values of
t between 0 and 1 to reflect the fact that forecasts
are sometimes underconfident. Alternatively,  could
be modeled as following an F distribution. The F
distribution describes a ratio of two y* random vari-
ables (which are in turn sums of squared normal
random variables); it is thus a reasonable model for
a ratio of variances.

3. THE PRIOR DISTRIBUTION INFLUENCES
THE EXPECTED VALUE OF
INFORMATION

One danger in neglecting the possibility of sur-
prise in developing prior distributions is that the Ex-
pected Value of Information (EVI) calculated using
that prior may be biased downward (Hammitt, 1995).
As shown below, the expected posterior probability
of an event equals the prior probability (e.g., the
probability that perfect information about the carcin-
ogenic risk of specified exposure to a compound will
reveal that the risk exceeds the 95th percentile of its
prior distribution is exactly 5%).> Consequently, if
the tails of the prior distribution are too thin to repre-
sent the ‘“‘true uncertainty,” the apparent probability
of learning that the parameter is far from the prior
median will be “too small.” The EVI is the integral
over all possible posterior distributions of the oppor-
tunity loss prevented by improved information,
weighted by the probability of that information. If
posterior distributions that lead to a change in deci-
sion are given too little probability, the EVI may be
underestimated. Although there is no general rela-
tion between overconfidence and bias in EVI, in
many risk-analytic problems the bias is likely to be
downward.

In the following subsections, we examine the
relationship between the prior distribution and EVI
and compare the Expected Value of Perfect Informa-
tion (EVPI) based on alternative prior distributions

3 Note that a prior distribution for cancer potency must incorporate
uncertainties about the form of the dose—response function and
other factors. The standard 95th percentile confidence limit re-
ported for carcinogenic potency reflects only the sampling vari-
ability in a bioassay and assumes that the linearized multistage
model is appropriate.
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Fig. 1. Comparison of tail probabilities for compound distribution using alternative values of u.

to empirical estimates of EVPI for historical projec-
tions of 1990 energy consumption.

3.1. Theory

The influence of the prior distribution on the
probability of reaching alternative posterior distribu-
tions was examined by Hammitt (1995). For an uncer-
tain variable y with probability density g, let E,(y)
and V,(y) denote the mean and variance, respec-
tively. Suppose one wishes to estimate the value of
a parameter 0 e O where O is the real line or a convex
subset of it. Current information about the value
of 6 is summarized by the prior density f(6). An
experiment is available that will estimate 6 without
bias but subject to measurement error. Represent the
outcome of the experiment by a random variable x
€ X, with known distribution g(x|6) and E,(x|6) = 6.
Once the experimental outcome x' is observed, one
can derive the posterior density function p(6|x’) using
Bayes’ rule,

plo) = 10810

where h(x) is the predictive density for x,

h(x) = [ ,08(x|0) f(6)d.

A fundamental relationship is that the posterior
density expected before the experiment is conducted
is equal to the prior density:

Eu[p(6x)] =[x p(6lx)A(x)dx

- ff%fj)‘"’) Wwde ()

= f(e)frs)(g(x| B)dx
=f(0).

This relationship has several implications. First, what-
ever the likelihood function associated with a particu-
lar experiment, before the results are known the ex-
pected posterior probability content of any specified
region is exactly the prior probability content of that
region (e.g., the expected posterior probability that
0 exceeds the 95th percentile of its prior distribution
is exactly 5%). One can expect to learn something
from the experiment, in the sense that the posterior
distribution may differ from the prior, but one cannot
know what to expect to learn. (If one knew what
change in the prior distribution to expect, the prior
would not adequately represent one’s current infor-
mation.)

Second, although the mean of the posterior dis-
tribution can be greater than, smaller than, or equal
to the mean of the prior distribution (depending on



Information and the Probability of Surprise

the experimental outcome x), the expected value of
the posterior mean is equal to the prior mean,

E\[E,(6)x)] = E/(6).

Third, the expectation of the posterior variance
cannot exceed the prior variance, because the prior
variance is equal to the sum of the expected posterior
variance and the variance of the posterior mean
(Raiffa and Schlaifer, 1961),

Vi(0) = EJfV,(6)] + Vi[E,(6]x)]. (4)

If the expected posterior variance E,[V,(6]x)] is small
(the experiment is expected to precisely estimate 6),
then the variance of the posterior mean V,[E,(6]x)]
is large and the posterior mean is likely to differ
substantially from the prior mean. In the limit, if the
experiment will yield perfect information about 6,
the prior distribution for the posterior mean is equal
to the prior distribution for 6. Alternatively, if the
experiment is not expected to reduce the variance
much, the variance of the posterior mean is small
and the posterior mean is not expected to differ much
from the prior mean.

The expected value of information depends on
the set of alternative decisions that are available and
on how the payoff depends on the decision and the
uncertain parameters. Let u(d,0) denote the utility
or payoff that results from choosing decision d when
there is a single uncertain parameter 6, and let d}
denote the decision that maximizes the expected pay-
off when information about 6is given by the distribu-
tion g(6). The expected value of information pro-
vided by the experiment is

EVI = [ o[ wou(ds, 0)p(6lx)d6)h(x)dx
— [wou(d, 0) £(0)deo.

In words, the expected value of information is the
difference between the expected payoff if one ob-
serves x and then selects the optimal decision for the
posterior distribution p(#6|x), and the expected payoff
if the optimal decision given the prior information
f(0) is selected.

The value of information depends on both the
probability that new information will lead to a differ-
ent decision than would have been selected given
prior information and the increased payoff that re-
sults from changing the decision. Intuitively, one
might suspect that the expected value of information
would be larger if the prior distribution reflects
greater uncertainty (so that overconfidence would
lead to an underestimate of EVI). However, because
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of the complexity of the dependence of EVI on the
prior distribution, likelihood function, available deci-
sions, and their payoffs, there is no general relation
between uncertainty and EVI (Hilton, 1981). To un-
derstand why, consider two examples.

Example 1. An uncertain variable 6 is known
to be uniformly distributed with mean zero, but its
range is uncertain (i.e., § ~ U[—o, o] where o is
uncertain). Let ¢’ < o represent an overconfident
estimate of o. Two decisions (d, and d,) are available
with payoffs u(d, 6) = 0 and u(d, ) = 1 — 6. Thus,
d, is preferred if 6 < 1; otherwise, d, is optimal.
Assume o > 1 (if not, d, is preferred regardless of
the value of 6 and EVPI = 0). The expected value
of perfect information about 0 is given by

EVPI = E[max {u(d, 6), u(d, 6)}]
— max {E[u(d, 6;)], E[u(d, 6)]}

1 n 1 (o
—%Ly(l - O)dé)—%fw(l — 6)de

o, 1 1
4 4o 2

EVPI is an increasing function of o, so EVPI is
larger the more uncertain the prior distribution. If
EVPI is calculated using the overconfident estimate
o', the result will underestimate the true value of
information. Moreover, if 0’ = 1 even the possibility
that d, might be preferred will be erroneously ig-
nored.

Example 2.* Maintain the same assumptions
as in Example 1, but replace d;, with d, where
u(d, 6) =1 — 6 For o = 1, d, dominates d, and the
expected value of perfect information is zero. For 1
< o =V3,EVPI =2/(30) + ¢/3 — 1; in this region,
EVPI increases geometrically with prior uncertainty
and overconfidence yields an underestimate of EVPI.
But for o= V3, EVPI = 2/(30) and EVPI decreases
with greater prior uncertainty. For V3 = ¢’ < o,
overconfidence yields an overestimate of EVPI. Intu-
itively, d, is a more robust decision than is d, in that
it provides optimal or near-optimal payoffs for most
values of 0. The alternative decision d, is only pre-
ferred when the probability that | < 1 is larger than
1/(V3) =~ 0.6. Overconfidence implies an overesti-
mate of the probability that |§| < 1 and thus an overes-
timate of the probability that improved information
will lead to rejecting the current choice d, in favor
of dz.

* This example was suggested by Charles Linville.
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Although there is no general relation between
the degree of prior uncertainty and the expected
value of information, EVI is larger the greater the
prior uncertainty for a class of problems that are
important in risk analysis. If the payoffs to alternative
decisions are linear functions of the uncertain vari-
able (as in Example 1) then the EVI is an increasing
function of the prior uncertainty’ (Gould, 1974). In
situations where the objective is to minimize the ex-
pected risk and risk under each control option is
proportional to an uncertain variable, overconfidence
will lead to an underestimate of EVI. In many risk-
analytic problems, the expected risk is at least ap-
proximately proportional to numerous uncertain fac-
tors such as toxicity coefficients; concentrations of
toxins in environmental media; inhalation, ingestion,
and adsorption rates; event probabilities; and others.

3.2. Example: Energy Forecasting

To examine the effect of overconfidence on EVI,
consider the problem of forecasting future energy
demand. Shlyakhter et al. (1994) examined nearly
400 projections of 1990 energy demand by fuel type
and end use. Because the true values of these vari-
ables are known, we can calculate the average real-
ized value of information and compare it with the
EVI that would have been calculated using alterna-
tive prior distributions.

EVI depends on the set of decision alternatives
and the utility or loss function relating the conse-
quences of a decision to the value of the uncertain
parameter(s). For simplicity, consider the standard
estimation problem where the decision set is the real
line and the loss function is the squared difference
between the forecast and realized values. Under
these assumptions, the EVPI is the expected squared
error (i.e., the variance of the prior distribution).
Because we are interested in the pattern of errors
rather than their absolute magnitude and wish to
average across projections to estimate the mean
squared error, we normalize the forecasts by their
reported standard deviations and examine the vari-
ance of the normalized errors.

Forecasts for 1990 energy demand by consump-
tion sector and fuel type were made in 1983, 1985,
and 1987 and reported in the Annual Energy Outlook
(U.S. Department of Energy, 1992). For each mea-

3 Recall that uncertainty is used in the sense defined by Rothschild
and Stiglitz (1970).
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sure of energy demand, three forecast values were
provided: reference, lower, and upper (denoted R,
L, and U, respectively). The probability content of
the forecast range is not stated, but Shlyakhter et al.
(1994) conservatively assume that L and U corre-
spond to one-sigma confidence limits, so the probabil-
ity that the true or realized value T falls between L
and U is 68% (assuming a normal distribution). To
account for asymmetry in the forecast distributions,
the normalized error x is defined by

_T—-R

IR roR
“U-rR
T-R
—I-" 7<R
““R-L°

Shlyakhter et al. (1994) find that the frequency distri-
bution of normalized errors is independent of both
the date the forecast was issued and the quantity
that was forecast. Although forecasts issued in 1987
generally predicted 1990 values more accurately than
did forecasts issued in 1983, the confidence limits on
the 1987 forecasts are also narrower than those of
the 1983 forecasts. Overall, the normalized errors are
well described using the compound distribution with
u = 3.

We calculate the EVPI as if the decision is to
accept the reference value R with loss proportional
to the square of the normalized error.® The empirical
or ex post estimates of EVPI are presented in Table
I and compared with the EVPI that would have been
calculated, ex ante, using triangular, normal, and com-
pound prior distributions with # = 1 and u = 3. The
empirical estimates of EVPI differ by a factor of
about 6.5 across forecast date with some indication
of smaller bias for the most recent forecast year.
Aggregated over the 3 years in which forecasts were
made, the empirical EVPI is 668 times larger than
the EVPI that would have been calculated assuming
the prior distribution for the normalized error was
normal. Equivalently, the EVPI calculated assuming
a normal prior would have underestimated the true
EVPI by a factor of 668. The triangular distribution,
which is attractive to some risk analysts because of
its simplicity, underestimates the empirical value of
EVPI by a factor of 2000 (668/0.33), three times
worse than the underestimate obtained using the nor-
mal distribution. The triangular distribution yields
such a large underestimate because it assigns proba-

¢ For asymmetric uncertainty bounds (U — R # R — L), Ris not the
mean and so EVPI is not equal to the variance of the distribution.
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Table I. Comparison of Expected Value of Perfect Information Using Alternative Prior Distributions
for Energy Forecasts*

Compound Compound

Date of forecast N Empirical Triangular Normal u=1) (u=3)
All forecasts

1983 128 534 0.33 1 3.56 14.6

1985 135 1221 0.33 1 3.56 14.6

1987 119 184 0.33 1 3.56 14.6

All dates 382 668 0.33 1 3.56 14.6
“Blunders” (forecasts with |x| > 10) excluded

1983 108 20.7 0.33 1 3.54 10.4

1985 110 12.6 0.33 1 3.54 10.4

1987 97 11.2 0.33 1 3.54 10.4

All dates 315 14.9 0.33 1 3.54 10.4

“EVPI is calculated as the square of the standardized error x between forecast and realization.

bility zero to normalized errors larger than one; these
large errors dominate the calculated EVPI under the
squared-error loss function. The EVPI calculated us-
ing the compound distribution is closer to the empiri-
cal value, although even with u = 3 the empirical
EVPI is underestimated by a factor of almost 50
(668/14.6).

The empirically estimated EVPI is sensitive to
the substantial number of forecasts for which the
normalized errors are extremely large. To examine
the sensitivity of EVPI to large errors (which may
often be the most important), we delete the 67 ““blun-
ders” (defined as cases with |x| > 10). The empirical
estimate of the EVPI falls from 668 to about 15, a
factor of 45. Even after excluding these large errors,
the EVPI calculated using any of the prior distribu-
tions underestimates the empirical value, but the esti-
mate for the compound distribution with # = 3 under-
estimates the empirical value by only a factor of about
1.5 (averaging across all forecast dates).

In summary, the expected value of information
can be very sensitive to the tails of the prior distribu-
tion and the use of an inappropriately short-tailed
prior may yield a gross underestimate of the expected
value of information. The limiting case of a short-
tailed prior is a point estimate, for which uncertainty
is not recognized and the calculated EVPI is zero.

4. HEURISTIC FACTORS EXPLAINING THE
VALUE OF INFORMATION

The EVI about a parameter depends on prior
knowledge about the parameter, characteristics of
research opportunities that can refine the prior infor-
mation, the available decision options, and the utility

or loss function. Hammitt and Cave (1991) identified
four heuristic factors that contribute to understand-
ing the EVI: uncertainty (about the parameter value),
informativeness (the extent to which current uncer-
tainty may be reduced), promise (the probability that
improved information will result in a different deci-
sion and the magnitude of the resulting gain), and
relevance (the extent to which uncertainty about the
parameter contributes to uncertainty about which de-
cision option is preferred). These factors are intro-
duced in the first subsection and illustrated by a nu-
merical example in the second subsection.

4.1. Heuristic Factors

Figure 2 illustrates a hypothetical decision about
whether to permit or prohibit use of a food additive.
The expected social cost (e.g., number of life-years
lost) is plotted against the risk 6 from consuming the
additive (e.g., excess cancer risk) as a function of
whether the additive’s use is permitted. If the additive
is prohibited, K represents the expected social cost
associated with use of whatever substitute would
be employed.

Current information about 6 is represented by
the probability distribution f°; the expected social
cost if the additive is permitted is L. If the regulatory
decision rule is to permit use of the additive if and
only if the expected social cost is less than the cost
associated with the substitute, the additive should be
permitted. Note however that there is a substantial
probability that the additive is riskier than the alter-
native and should be prohibited.

Assume there exists some research program that
will yield one of two possible outcomes, showing ei-
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Fig. 2. The expected value of research for a decision to permit or
prohibit use of a hypothetical food additive. The human health
risk if the additive is permitted is 6, with current information
represented by f°. If additive use is permitted, the social cost (e.g.,
life-years lost) is proportional to 6 if the additive is prohibited,
the social loss associated with the substitute technology is K. The
posterior distributions f* and f~ are obtained by updating f° with
the results of a research program with two possible outcomes. The
expected social cost if the additive is permitted without further
research is LY, the expected social cost if the research is undertaken
and the additive is permitted or prohibited according to the result
is L', and the EVI is L°-L.

ther that 6 is more hazardous or safer than current
information suggests. The corresponding posterior
distributions, f* and f~ are obtained by combining the
prior f with the likelihood function for the research
program. The expected posterior mean is equal to
the mean of f° (by Eq. 3), the expected social cost if
the research is undertaken and the additive is then
permitted or prohibited as appropriate is L and the
EVI = L’ - L.

The effect of greater prior uncertainty about the
parameter is illustrated by Fig. 3, which represents
the identical situation as Fig. 2 except the prior distri-
bution f° is broader. The posterior distributions f*
and f~, obtained by combining the broader prior dis-
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Fig. 3. Greater prior uncertainty compared with Fig. 2 spreads
the means of the posterior distributions and so decreases L' and
increases EVI.
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Fig. 4. Greater informativeness of the research program compared
with Fig. 2 narrows the posterior distributions and spreads their
means, decreasing L' and increasing EVI.

tribution with the same likelihood function as in Fig.
2, are consequently broader and have more widely
separated means than in Fig. 2. As a result, the reduc-
tion in social loss conditional on learning the additive
is safer than currently indicated (L° — L") is larger
than in Fig. 2 and the EVI, L° — L' is also larger.

The effect of greater informativeness is shown
in Fig. 4, which combines the same prior distribution
as in Fig. 2 with a research program providing greater
information about 6 (i.e., the likelihood function con-
ditional on each research outcome is more concen-
trated). Consistent with Eq. (4), the means of the
posterior distributions are farther apart than in Fig.
2, and so the EVI is larger.

The effect of promise is illustrated in Fig. 5. This
figure is identical to Fig. 2 except the expected social
cost associated with the substitute technology (the
cost incurred if the additive is prohibited) is larger
than in Fig. 2. Consequently, the gain from prohib-
iting additive use if the research shows that it is more

K Prohibit additive use

L0
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= f° f*
Permit additive
use

Expected social cost

]

Fig. 5. Greater social cost of the substitute technology compared
with Fig. 2 reduces the gain from prohibiting additive use condi-
tional on learning it is more hazardous than currently indicated
(f*) and so increases L' and decreases EVI.
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hazardous than prior information suggests is much
smaller than in Fig. 2, and so the EVI is smaller as
well. (If the risk from the substitute K exceeds the
larger of the two posterior risk estimates for the addi-
tive L*, the EVI is zero.) Similarly, perfect informa-
tion about 6 would be less valuable in this situation
than in Fig. 2 because the probability that the new
information would lead the regulator to prohibit ad-
ditive use is smaller than in Fig. 2.

The fourth heuristic factor, relevance, applies
when the preferred decision depends on the values
of multiple uncertain parameters. Figure 6 illustrates
the isopleths of a joint prior distribution for two un-
certain parameters, 6, and 6, together with the
boundary separating the regions where permitting
and prohibiting the additive are the preferred deci-
sions. Relevance determines the shape of the bound-
ary between the two regions; in Fig. 6, the decision
is more sensitive to the value of 6, than to the value
of 6, and so improved information about 6, is more
likely to alter the decision. When uncertain factors
are multiplied together (as in the following example),
all are equally relevant to the decision.

4.2. Example: Dichloromethane in
Decaffeinated Coffee

The effects of the first three heuristic factors—
uncertainty, informativeness, and promise—can be
illustrated using an example from Hammitt and Cave
(1991). Dichloromethane (DCM) or methylene chlo-

6,

Permit additive use -4— | —p Prohibit additive use

6

Fig. 6. Values of the uncertain parameters 6, and 6, for which
permitting and prohibiting the additive are the preferred decisions
and isopleths of the joint prior distribution for the parameters;
improved information about 6; is more relevant than information
about 6, as it is more likely to lead to a change in the decision.
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ride is a chlorinated solvent that was used to decaf-
feinate coffee until concerns about health risk led to
substitution of alternative decaffeination processes.
For simplicity, assume that the excess cancer risk
to a representative consumer from drinking coffee
decaffeinated with DCM can be represented as

0= yAp

where 6 is the lifetime probability of developing can-
cer from this exposure source, vy is average daily de-
caffeinated-coffee consumption, A is the DCM con-
centration in decaffeinated coffee, and p is the
carcinogenic potency of DCM.’

Let the prior distributions for the three factors
be lognormal. The excess risk 6 is then lognormally
distributed with parameters given by the sums of the
corresponding factors for the three components as
shown in Table II. (For 6 and A, which are bounded
above by one, the lognormal distribution should be
interpreted as an approximation to a logit-normal dis-
tribution.)

Assume the regulator is considering two options:
to permit DCM use in coffee, leading to the uncertain
risk described in Table 11, or to prohibit use, in which
case producers will substitute an alternative decaffei-
nation process; assume the expected excess cancer
risk if the alternative is used is K = 8.3 X 107°¢ (and
that uncertainty about this value cannot be reduced).
If required to choose on the basis of minimizing ex-
pected risk and without additional information, the
regulator should prohibit DCM use as the expected
risk is 2.1 X 1073, slightly larger than the risk of the
substitute (see Hammitt and Cave, 1991 for justifica-
tion of the prior distributions).

The expected values of perfect information
about the risk from drinking DCM-decaffeinated cof-
fee and about each of the three factors are reported
in Table II. The EVPI about the excess risk is 6.8 X
1075%. The EVPI about the three factors contributing
to uncertainty about the risk are monotonically re-
lated to the respective uncertainties: the EVPI for
carcinogenic potency (6.4 X 107°) is greater than the
EVPI for DCM concentration in coffee (1.6 X 107°)
which is greater than the EVPI for coffee consump-
tion (1.6 X 1077). The EVPI about potency is 93% of
the EVPI about risk; because this factor dominates
the uncertainty about risk, perfect information about

" Note that this simple model could be extended to account for
variability among consumers and coffees, nonlinearities in the
relationship between consumption and internal dose, and
other factors.
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Table Il Prior Distributions and Expected Value of Information for DCM Risk

logyo logyo
Component (median) (GSD*) Variance EVPI’ SD(w)" EVIY
Consumption (y) 5.5 0.25 37e +5 7.1e + 10 1.6e — 7 0.1 1.0e — 7
Concentration (A) =17 0.5 1.9e — 7 52e — 14 1.6e — 6 0.5 6.4e — 7
Potency (p) -5.33 125 29¢e —4  13e — 4 6.4e — 6 10 65¢ — 9
Risk from DCM (6) —6.83 1.37 21e =5 35¢ — 6 6.8¢ — 6
Risk from substitute (K) 83e — 6

“ Geometric standard deviation.

b Expected value of perfect information about parameter.

¢Standard deviation of measurement error.

4 Expected value of information resulting from research about parameter with specified measurement error.

it is almost as valuable as perfect information about
risk. In contrast, the EVPI about DCM concentration
and coffee consumption are 24% and 2%, respec-
tively, of the EVPI about risk. (In general, the sum
of EVPI about individual components may equal,
exceed, or be smaller than the EVPI about the com-
ponents jointly.)

Obtaining perfect information about any of the
factors is unrealistic. More plausibly, the regulator
can conduct research that will yield improved infor-
mation about the value of each of the factors. In this
case, the EVI depends on both uncertainty about the
factor and the informativeness of available research
programs. In many cases, there is a tradeoff between
the informativeness and cost of research; both are
increased by sampling a larger number of units, for
example. Following Hammitt and Cave (1991), we
model research as an experiment that yields a mea-
surement of the target factor multiplied by a random
error term (analogous to measurement error); ex-
pressing this relationship in logarithms yields an addi-
tive error. For example, research on the concentra-
tion of DCM in decaffeinated coffee yields a value

Xy = logl(](/\) + &€\

where ¢, is a random error term assumed to have
moments E(g,) = 0 and var(e,) = w3. Under these
assumptions, the posterior distribution for log;(A) is
normal with variance 1/(1/6% + 1/w3), where o3 is
the prior variance of log;(A).

The variance of the random error depends on the
component under study. Because of the comparative
difficulty in improving estimates of the three compo-
nents the variance of the error is likely to be largest
for carcinogenic potency and smallest for coffee con-
sumption. Table Il reports illustrative standard devia-
tions of measurement errors for three research pro-
grams and the corresponding EVI, measured by the

reduction in excess cancer risk for the representative
consumer. For the selected parameter values, the
EVI is greatest for research on DCM concentration
and smallest for research on the carcinogenic potency
of DCM. Even though prior uncertainty about po-
tency is much larger than prior uncertainty about
DCM concentration and coffee consumption, the
greater accuracy with which concentration and con-
sumption can be measured yield larger expected val-
ues of information about these components. Compar-
ing the EVI for concentration and for consumption
shows that, even though consumption can be mea-
sured more accurately, the EVI for concentration is
larger because of the greater prior uncertainty.

In addition to uncertainty and informativeness,
the expected value of information depends on the
promise of the research program (as noted above, all
three parameters are equally relevant because they
are combined multiplicatively). Promise combines
two attributes: the probability that a research pro-
gram will yield information which is sufficiently per-
suasive to alter the regulatory decision and the gain
(risk reduction) that results from altering the deci-
sion. In the example, the EVI depends on the risk K
from consuming substitutes for DCM-decaffeinated
coffee. As a function of K, the EVI about the risk
from DCM-decaffeinated coffee and about each of
the three factors is largest when K equals E(6) and
is smallest when K is either much larger or much
smaller than E(6). If the difference between K and
E(6)is large, it is unlikely that the regulatory decision
that would be based on prior information is incorrect,
and unlikely that research will alter information
about E(6) enough to alter the regulatory decision.
If K is one or two orders of magnitude smaller than
the value in the base case (Table II), for example,
research results are unlikely to yield a posterior esti-
mate of E(6) < K and so the decision to prohibit



Information and the Probability of Surprise

DCM use suggested by the prior estimate is unlikely
to be altered. For K = 83 X 1077 and K = 8.3 X
1078, the EVPI about 0is 4.9 X 1077 and 2.7 X 1078,
respectively. These values are more than one and
two orders of magnitude smaller than the EVPI in
the base case.

5. COMBINING INFORMATION IN A PRIOR
DISTRIBUTION

A prior distribution may be based on data for a
similar parameter, the informed judgment of the risk
analyst or subject-matter experts, or a combination
of sources. Expert judgments may be encoded infor-
mally or through formal probability-elicitation meth-
ods. In the usual case, it is necessary to combine
information from multiple sources, either to adjust
the empirical distribution of a similar parameter to
account for differences between that parameter and
the one of interest, or to reflect differences among
multiple experts whose judgments have been elicited
using formal procedures. Many procedures for com-
bining information have been proposed but none are
clearly superior (Cooke, 1991; Jacobs, 1995; Clemen
and Winkler, 1997). Moreover, the implications of
alternative procedures when one is concerned to
avoid overconfidence bias associated with the neglect
of potential surprise has received little attention.

In the following subsections, we discuss two main
classes of aggregation procedures, propose a method
to adjust for overconfidence in expert judgments, and
illustrate with an example using expert judgments
about the magnitude of global climate change that
would result from increasing atmospheric carbon di-
oxide.

5.1. Theory

Dependence among experts is both central to
proper combination of expert judgments and difficult
to evaluate. Judgments of multiple experts about a pa-
rameter can be extremely informative when those
judgments are probabilistically independent, condi-
tional on the “true” value. If, as is often the case, ex-
pertsshare much of the knowledge relevant to estimat-
ing a parameter value (e.g., a common scientific
literature), the information contained in the union of
multiple experts’ judgments may be little more than
that contained in a single expert’s judgment (in effect,
each expert may report an idiosyncratic perception of
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a consensus). Clemen and Winkler (1985) provide
bounds on the number of independent experts whose
combined information is equivalent to that of a larger
number of dependent experts.

We consider two classes of algorithms for com-
bining distributions across experts: weighted aver-
ages (opinion pools) and Bayesian combinations
(Cooke, 1991; Jacobs, 1995; Clemen and Winkler,
1997). The weighted-average approach is simple, in-
tuitively appealing, and can generate a wide range
of combination rules. Bayesian approaches are moti-
vated by treating each expert’s judgment as data to
be used in updating a prior distribution. A difficulty
is that Bayesian methods require specifying the likeli-
hood function or distribution of expert judgments
conditional on the value of the uncertain parameter
of interest. The limited available evidence on relative
performance of alternative combination methods
suggests that simple averages often perform nearly as
well as the theoretically superior Bayesian methods
(Clemen and Winkler, 1997).

A weighted average provides a transparent
mechanism for representing unequal degrees of ex-
pertise. The weights can be assessed by the participat-
ing experts themselves or by others; they may also
be used as sampling weights to represent the propor-
tion of the universe of relevant experts with similar
views. A weighted average of the experts’ probability
density functions (a linear opinion pool) can be moti-
vated by the assumption that one of the experts’
distributions is ‘“‘correct,” but it is not known which
one; the weights represent the relative probability
that each expert’s distribution is “correct.”

The simple weighted average can be generalized
to provide a broad set of combination rules with
potentially attractive properties, although it does not
allow for convenient representation of dependence
among experts’ judgments. Following Cooke (1991),
consider the case in which m experts provide subjec-
tive probabilities for each of n events; let p; denote
expert i’s probability of event j. A set of weights {w;}
is assigned to account for differences in expertise or
credibility among experts. Define the elementary r-
norm-weighted mean

m 1r
Mr(]) = <21 Wip;j)
and the r-norm probability

Py =D

; M, (k)
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(These expressions may be generalized to the case
of continuous random variables by replacing the sum-
mations with appropriate integrals.)

The r-norm probability provides substantial
flexibility in combining experts’ probability distribu-
tions. For r = 1, P, is the linear opinion pool. Taking
the limit as r — 0 yields

My(j) = H Pr;"
i1

so P, (the logarithmic opinion pool) is proportional
to the geometric mean of the experts’ distributions.
For r = —1, P, is proportional to the weighted har-
monic mean of the experts’ distributions. In the limit
as ¥ — ® and r — —o, P, is proportional to the
largest of the probabilities offered by the experts and
P_., to the smallest probability offered, respectively.
For all values of r, the r-norm probability has the
‘“zero-preservation property’: if all experts assign
probability zero to event j, then P.(j) = 0. For r =
0, if any expert assigns probability zero to event j,
then Py(j) = 0 (Cooke, 1991).

An alternative approach to combining expert
judgments is based on Bayes’ rule. Beginning with a
(possibly diffuse) prior distribution, the analyst treats
each expert’s distribution as new information and
updates his prior using Bayes’ rule. The details of
the updating depend on the analyst’s assessment of
the likelihood function. The likelihood represents the
probability that each expert will give the judgment
he provides as a function of the underlying state of
nature, and consequently incorporates information
about the relative quality of experts’ judgments (e.g.,
bias and overconfidence) as well as dependencies
among the experts. The likelihood function provides
a much more discriminating approach to characteriz-
ing the quality of an expert’s judgment than does the
single weight permitted by the weighted-average ap-
proaches.

Several models for the likelihood have been ex-
amined in the literature (Cooke, 1991; Jacobs, 1995;
Clemen and Winkler, 1997). The geometric-mean
combination P, can be derived from a model that
treats each expert’s assessment of a parameter as
equal to the true parameter value multiplied by a
random error (Mosleh and Apostolakis, 1986;
Cooke, 1991).

Jouini and Clemen (1996) proposed a copula-
based approach to combining distributions. A copula
is a mathematical function that can be used to repre-
sent probabilistic dependence when coupling mar-
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ginal probability distributions (the experts’ judg-
ments) into a multivariate distribution (the joint
likelihood of the experts’ judgments). This approach
provides a flexible method for representing depen-
dence among experts without restricting the form of
the experts’ distributions. In the following subsection,
we describe the copula-based approach and use it to
combine expert distributions.

Two properties that have been advocated for
rules to combine expert distributions are the “mar-
ginalization” and “‘external Bayesianity” properties.
Each property requires that the distribution obtained
by combining expert judgments be invariant to speci-
fied procedural choices. However, most reasonable
combination methods violate one if not both of
these properties.

Marginalization requires that the combined
probability of an event A be independent of whether
the analyst combines the experts’ assessed probabili-
ties of A or sums the combination of the experts’
assessed probabilities of s > 1 mutually exclusive
and collectively exhaustive subsets of A. The r-norm
probability satisfies marginalization only for r = 1.

Cooke (1991) argues that marginalization is a
normatively important property, offering the follow-
ing example: Two (equally credible) experts both
assign probability 0.8 to the event that an old flash-
light will not work. Using the geometric-mean combi-
nation Py, the combined probability that the flashlight
will not work is also 0.8. Assuming only two possible
(mutually exclusive) failure modes, dead battery and
corroded contacts, the probability of failure based on
combining the assessed probabilities of each failure
mode need not equal 0.8 if the experts disagree about
the relative probabilities of the failure modes. If the
experts assign probabilities (0.7, 0.1) and (0.1, 0.7),
respectively, to the two failure modes, the combined
probability that the flashlight will not work is 0.73
(the probabilities of dead battery and of corroded
contacts are each [0.1 - 0.7]Y> that of no failure is
[0.2 - 0.2]%). Because of the zero-preservation prop-
erty, if the experts assign probabilities (0.8, 0) and
(0, 0.8) to the failure modes, the combined aggregate
probability that the flashlight will not work is zero,
as the combined probability of each failure mode is
zero (even though the experts agree that the marginal
probability is 0.8).

In response to Cooke, one might argue that the
experts’ disagreement about failure modes provides
important information about the credibility of each
expert’s probability that the flashlight will not work.
Strong disagreement about the probability of the in-
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dividual failure modes suggests that their agreement
on the marginal probability of the flashlight not work-
ing is only coincidental and should have little signifi-
cance for combining their judgments; Lindley (1985,
1988) argues that marginalization is not reasonably
required of a combination rule. If the marginalization
property is not required, however, the results of com-
bining expert judgments may depend on the disaggre-
gation of events and so the analyst will need to con-
sider and justify whatever disaggregation is selected.
Moreover, the marginalization property only applies
to linear combinations of probabilities. When nonlin-
ear models are used, combining judgments about the
inputs will not necessarily yield the same result as
combining model outputs even if the combination
rule satisfies marginalization.

The external Bayesianity property applies to the
case where one wishes to update a distribution when
new data (or additional experts’ judgments) are ob-
tained. It requires that the same posterior distribution
result whether one updates the prior distribution ob-
tained by combining the experts’ prior distributions,
or updates each expert’s distribution and then com-
bines the resulting posterior distributions. Of the r-
norm probabilities, only P, is externally Bayesian
(Cooke, 1991). Lindley (1985, 1988) argues that this
property is also not reasonably required of a proce-
dure, but again if the combination rule is not exter-
nally Bayesian the analyst will need to justify the
selected method for updating a combined distri-
bution.

Acknowledging the possibilities of expert over-
confidence and surprise suggests evaluating the ef-
fects of combination rules on tails and other subsets
of the parameter domain assigned low probability.
As already noted, the geometric-mean combination
P, as well as other Bayesian combinations exhibit an
extreme form of the zero-preservation property: if
any expert assigns probability zero to some range of
parameter values, the combined distribution does so
as well. If experts’ distributions are represented as
triangular, uniform, or other forms that assign posi-
tive probability to only a finite interval, the interval
to which no expert assigns zero probability may be
small or nonexistent. This possibility represents a
limitation of the Bayesian approaches but also high-
lights the danger in assigning zero probability to
events that are not “impossible.” We caution analysts
to avoid assigning zero probability to parameter val-
ues that are not logically outside the bounds of the
parameter (e.g., mass concentration ratios may be
assigned zero probability outside the interval [0—1]).

147

In addition, to reflect possible neglect of surprise
events, it may be useful to extend the tails of experts’
distributions as discussed in Sect. 2. (The results of
extending the tails of experts’ distributions before
combining them and extending the tails of the com-
bined distribution will not, in general, coincide.) The
linear opinion pool may be preferred to a Bayesian
combination because it represents greater uncer-
tainty in the sense that its support (the set of parame-
ter values assigned positive probability) is a superset
of the support of a Bayesian combination. This fol-
lows because Bayesian combinations assign zero
probability to parameter values for which any experts
give zero probability, but the linear opinion pool
assigns zero probability only to parameter values for
which all experts give zero probability.

5.2. Example: Climate Sensitivity

Morgan and Keith (1995) elicited probability
distributions for a number of parameters related to
global climate change from 16 recognized experts in
climate science. The elicitations were conducted us-
ing an extensive, formal process including pre-testing
the elicitation instrument, advance distribution of
background materials to experts, and day-long inter-
views. For illustration, we consider the experts’ judg-
ments for a central parameter in assessing the risk
of climate change, the “‘climate sensitivity” AT, de-
fined as the equilibrium increase in global annual
mean surface temperature that would result from a
doubling of atmospheric carbon dioxide concentra-
tion from its pre-industrial level.

Morgan and Keith (1995) caution that it may
not be appropriate to combine distributions across
experts and that the diversity among the experts’
distributions itself conveys important information
about the degree of consensus in the expert commu-
nity. In decision making, it may be better to analyze
the problem using each expert’s distribution individu-
ally to determine whether differences among experts’
judgments are important to the decision and whether
decisions that are robust to differences among ex-
perts’ judgments can be identified (Morgan and Hen-
rion, 1990). Nevertheless, a single decision must ulti-
mately be made and so it appears useful to consider
a distribution incorporating the best available infor-
mation, which requires combining the judgments of
relevant experts.

The experts’ distributions for A7), are summa-
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rized by the boxplots in Fig. 7 (the participating ex-
perts are identified by Morgan and Keith (1995) but
are not associated with particular distributions). Ex-
pert 4 gave two distributions, a base distribution and
a second, wider distribution conditional on a ‘‘sur-
prise” in understanding the climate system. With the
exception of expert 5, who gave a very narrow distri-
bution (minimum and maximum values of 0.06 and
1.0°C, respectively), most of the other experts’ distri-
butions are consistent with the values reported by
the Intergovernmental Panel on Climate Change
(IPCC): 1.5 to 4.5°C, with a “most likely value” of
2.5°C (IPCC has refrained from specifying the proba-
bility content of this range; Houghton et al, 1990,
1996).

We combine the experts’ distributions using the
copula-based Bayesian combination and the linear
opinion pool. Morgan and Keith (1995) provide no
indication of the likelihood expert 4 assigned to the
type of surprise for which his second distribution
would be appropriate; for simplicity, we treat his two
distributions equivalently (as if they were provided
by separate experts).

Following Jouini and Clemen (1996), we use an
Archimedian copula from Frank’s family for combin-
ing the experts’ distributions. An Archimedian cop-
ula treats the experts as exchangeable (i.e., the result
is independent of which expert provided each distri-
bution). Consequently, experts are treated as being
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Fig. 7. Experts’ probability distributions for climate sensitivity
AT,,, the equilibrium increase in global annual mean surface tem-
perature that would result from an increase in atmospheric carbon
dioxide concentrations to twice the pre-industrial level (Morgan
and Keith, 1995). Boxplots illustrate median (+), interquartile
range (box), Sth and 95th percentiles of the experts’ distributions.
Experts are identified by number. Expert 4 provided two distribu-
tions, ‘‘without surprise” (4a) and “‘with surprise” (4b).
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equally reliable and the degree of dependence is the
same across all pairs of experts.

Let h,(6) denote the subjective probability den-
sity provided by expert i (where § = AT),) and let
H,(0) denote the associated distribution function. The
combined density function

£(0) = kCyo[l — Hi(6), 1 — Hy(9), . . .,
L= H(6)]h(6)hA6) . . . h(6)

where k is a normalization constant and the copula
is specified as

Cn|a(ul’u2’ ..

(ati—1). . .(oz”n—l):|
(a—1)"" ‘

The parameter « characterizes the pairwise depen-
dence among experts, with smaller values represent-
ing greater dependence. Independence is achieved in
the limit as « — 1 and perfect dependence is achieved
as a — 0.

To account for possible underestimation of ex-
treme outcomes, we extend the tails of the experts’
distributions using the compound distribution (Sect.
2) before combining distributions. The effect of ex-
tending the tails differs dramatically between the two
combination rules. In addition, we examine the sensi-
tivity of the combined distributions to including and
omitting the atypical distribution provided by ex-
pert 5.

From each expert, Morgan and Keith (1995) ob-
tained minimum and maximum values of AT,, to-
gether with selected fractiles at probability incre-
ments of 0.1 or 0.05. The minimum and maximum
values were not necessarily treated as absolute
bounds, but the fractiles to which these values corre-
spond are not reported (M. Granger Morgan, per-
sonal communication). For illustrative purposes we
treat the reported minimums and maximums as the
0.0 and 1.0 fractiles.

We obtained probability density functions for
the expert distributions by differentiating the cumu-
lative distribution functions, which we approximated
as linear between the elicited fractiles. Distributions
with extended tails were obtained by replacing the
10% tails of the elicited distributions (i.e., outside
the central 80% probability interval) with probability
density proportional to exp(—|x|/u) where x is the
difference from the expert’s median normalized by
the difference between the median and the adjacent
quartile of the expert’s distribution (the extended
tails are asymmetric). Consistent with the analysis
of errors in energy projections, we selected u = 3
(Shlyakhter et al., 1994).

., u,) = log, [1 +
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Combined distributions using the copula-based
approach are sensitive to the treatment of expert 5’s
distribution, but are remarkably insensitive to the
assumed degree of dependence among experts. Fig-
ure 8 illustrates using a value of « representing high
dependence among the experts. For this value (o =
e 182), the pairwise concordance probability is 0.9
(i.e., conditional on one expert overestimating AT5,),
the probability that each other expert overestimates
AT,, is 0.9, and so the probability that all 16 other
expert judgments jointly overestimate ATy, is 0.9' ~
0.2). Combined distributions assuming smaller de-
pendence among experts, including independence
(pairwise concordance probability equal to 0.5), are
almost identical.

Because the copula-based approach exhibits the
zero-preservation property, the distribution obtained
by combining all expert distributions assigns proba-
bility one to the interval (0.7, 1.0), as these are the
only values of AT,, to which all experts assigned posi-
tive probability. In contrast, the distribution obtained
on combining all the distributions except expert 5’s
is consistent with the IPCC’s stated range (1.5 to
4.5°C): the central 98% probability interval is (1.6,
2.8); the support is the interval (0.7, 4.9). Extending
the tails of the experts’ distributions sharply reduces
the sensitivity of the combination to expert 5’s distri-
bution. The result is quite similar to that obtained by
deleting expert 5’s distribution from the combination
except that it has a noticeably heavier left tail (on
the interval [1.5,2.2]) and assigns positive probability
to the entire real line. In contrast, extending the tails
has little effect on the combined distribution when
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expert 5’s distribution is omitted; the two distribu-
tions cannot be distinguished in Figure 8.

Combined distributions based on the linear
opinion pool P, (with equal weights) are presented
in Figure 9 and compared with copula-based combi-
nations assuming perfect dependence (pairwise cor-
relation = 1.0) among the experts. The illustrated
linear opinion pools are simple averages of the proba-
bility densities provided by each expert® after ex-
tending the tails to adjust for possible overconfidence.
The results of combining the distributions without
extending the tails are nearly identical. The linear
opinion pool is not strongly sensitive to the inclusion
or omission of expert 5’s distribution. In either case,
the result is very consistent with the IPCC range: the
mode is near 2.5°C and most of the probability is
assigned to the interval 1-5°C. Including expert 5’s
distribution adds a secondary mode near 0.5°C.

The copula-based distribution assuming perfect
dependence among the experts and excluding expert
5 is remarkably similar to the linear opinion pool.
Even under this extreme dependence assumption,
the copula-based distribution remains very sensitive
to expert 5’s distribution; when it is included, the
combined distribution shifts to the left and assigns
very little probability to values of AT, greater than
about 2°C.

Except when perfect dependence among experts
is assumed, all of the (copula-based) Bayesian combi-
nations are much narrower than the linear opinion

8 Recall that the two distributions provided by expert 4 are treated
as if they were provided by two of 17 total experts.

Probability density

Fig. 8. Probability density functions for A7), obtained
as copula-based Bayesian combinations of the expert
distributions assuming high dependence among experts

0.0

(pairwise concordance probability = 0.9, « = ¢ '*?). Long

0.5 1.0 1.5 2.0 25

AT, (°C)

dashes: all experts; Solid line: all experts with added
30 exponential tails; Short dashes: expert 5 excluded (densi-
ties with and without added exponential tails are indistin-
guishable).
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Probability density

Fig. 9. Probability density functions for A7), obtained
as linear opinion pools and as copula-based Bayesian
combinations of the expert distributions assuming perfect
dependence among experts. All combinations use expert
distributions with added exponential tails. Mixed short
and long dashes: linear opinion pool; Short dashes: linear
opinion pool excluding expert 5; Long dashes: copula-
based distribution with all experts; Solid line: copula-
based distribution excluding expert 5.

pools and the IPCC uncertainty range (1.5-4.5°C).
Probabilistic independence appears to be an untena-
ble assumption in this case, since most of the experts
have participated in developing the IPCC evaluations
and all are familiar with (and contributors to) the
literature summarized by IPCC. Even when a rather
high degree of dependence is assumed, however, the
combination of 16 or 17 expert judgments yields a
much narrower range than most of the experts pro-
vided individually, reflecting the statistical power of
multiple observations (even when the observations
are not independent). The broad uncertainty interval
produced by the linear opinion pool is only consistent
with the Bayesian approach if an extraordinarily high
degree of dependence is assumed.

Several alternative approaches to obtaining a
distribution for climate sensitivity exist. For example,
uncertainty about climate sensitivity can be examined
by estimating A7), from multiple runs of general cir-
culation and other models representing some of the
processes through which CO, concentrations affect
global climate. If one elicited judgmental multivariate
distributions about the appropriate values of parame-
ters to be used in such models and then derived the
uncertainty in climate sensitivity by propagating
these parameter uncertainties through a set of mod-
els, the result would differ from the results obtained
by combining the distributions of climate sensitivity
produced by the models.” These procedures would
yield different results, even if the combination rule
satisfied the marginalization property, because the
climate models are nonlinear in most parameters.

 The expert judgments for AT, are based in part on the results
of such model simulations.

Hammitt and Shlyakhter

AT, (° Q)

Alternatively, expert judgments could be character-
ized in terms of a climate-feedback parameter (Wig-
ley and Schlesinger, 1985). The feedback parameter
is proportional to the reciprocal of AT,,; if the experts’
distributions for AT, were transformed to distribu-
tions for the feedback parameter, combined, then
transformed to yield a distribution for AT, the re-
sults would also differ from the results of directly
combining the expert distributions for AT,.

The appropriate level of detail at which to obtain
expert judgment is unknown (and surely depends on
context). There is some evidence supporting the view
that experts should provide judgmental estimates
about rather disaggregated components of a problem
that can be aggregated using an appropriate model
(Clemen and Winkler, 1997).

6. CONCLUSION

The assessed expected value of information de-
pends on the prior distribution used to represent cur-
rent information. Although exceptions can be readily
generated, it is typically the case in risk assessment
that the narrower the prior distribution, the smaller
the assessed expected value of information. The well-
documented tendency of individuals to be overcon-
fident in summarizing their information, including
particularly the tendency to underestimate the proba-
bility of surprise, can lead to large underestimates of
the expected value of information. Such underesti-
mates may be reduced by adopting prior distributions
designed to mitigate the effect of neglecting potential
surprise, such as a long-tailed compound distribution
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calibrated to previous experience in the relevant
domain.

In addition to uncertainty about one or more
parameter values, the expected value of information
depends on other characteristics of the problem, in-
cluding the available decision options, research op-
portunities, and the resulting payoffs. Important fac-
tors may be heuristically represented as the
informativeness of available research opportunities,
the promise that research can be sufficiently persua-
sive to result in a decision that differs from the one
that would be made in the absence of the research,
and the relevance of uncertainty about a parameter
to determination of which of the available decisions
is superior.

In attempting to incorporate all the relevant evi-
dence, analysts will often wish to combine information
from multiple sources, including expert judgment. Nu-
merous procedures for combining information across
experts and other sources have been proposed but
there is no consensus regarding the best procedure or
even the relevant attributes for making that determi-
nation. The most appropriate procedure is surely de-
pendent on the context of the problem and the state
of the scientific theory, modeling, and data available
for estimating important quantities.

The two prominent, simple procedures exam-
ined, Bayesian combination (using a copula to repre-
sent dependence among experts) and linear opinion
pool, yield substantially different results and differ in
their sensitivity to details of the experts’ distributions.
The linear opinion pool is less sensitive to individual
distributions, and its results appear to be inconsistent
with the theoretically justified Bayesian approach ex-
cept under the extreme assumption of perfect depen-
dence among experts. A potential weakness of the
Bayesian approach is its extreme sensitivity to ex-
perts who assign zero probability to events that other
experts view as possible; this limitation can be readily
mitigated by extending the tails of expert distribu-
tions to reflect possible overconfidence.

Recognizing the possibility of surprise and ade-
quately incorporating it in a risk or uncertainty analy-
sis remains a challenge. The expected value of infor-
mation is likely to be more sensitive to the probability
of surprising outcomes than is the optimal decision
under uncertainty, which suggests that research deci-
sions in particular may benefit from thoughtful analy-
sis of the characteristics of potential surprises. Analy-
sis of possible surprises is likely to remain highly
imperfect, however. By definition, potential surprises
will remain elusive.
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