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After two columns on practical problems arising in curreay dechnologies (multicores in Column
29; systems research in Column 30), this column takes a stwarpowards the futuristic realm of quantum
computations. More specifically, the column features tweeys ofdistributed quantum computingrhich,
unbeknownst to many distributed computing folks, is anvadirea of research.

First, Anne Broadbent and Alain Tapp provide a broad overwédistributed computations and multi-
party protocols that can benefit from quantum mechanicst naiably fromentanglementSome of these
are unsolvable with classical computing, for example, geeelepathy. In other cases, like appointment
scheduling, the problem’s communication complexity camdsiiced by quantum means.

Next, Vasil Denchev and Gopal Pandurangan critically erxantine joint future of quantum computers
and distributed computing, asking whether this is a newtfeon. . or science fiction. They give background
to the lay reader on quantum mechanics concepts that pradidied value over classical computing, (again,
entanglement figures prominently). They also elaboraténerptactical difficulties of implementing them.
They then illustrate how these concepts can be exploitetivimgoals: (1) to distribute centralized quantum
algorithms over multiple small quantum computers; and ¢2dlve leader election in various distributed
computing models. They conclude that the jury is still outtloa cost-effectiveness of quantum distributed
computing.

Both surveys outline open questions and directions forréutesearch. Many thanks to Anne, Alain,
Vasil and Gopal for their contributions!

Call for contributions: | welcome suggestions for material to include in this colymmeluding news,
reviews, open problems, tutorials and surveys, eithergrgdhe community to new and interesting topics,
or providing new insight on well-studied topics by organgithem in new ways.
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Abstract

We present a brief survey of results where quantum infolngtrocessing is useful to solve dis-
tributed computation tasks. We describe problems thatapessible to solve using classical resources
but that become feasible with the help of quantum mechaklesalso give examples where the use of
quantum information significantly reduces the need for comication. The main focus of the survey is
on communication complexity but we also address otheridigtd tasks.

Keywords: pseudo-telepathy, communication complexity, quantumeggsimulation of entangle-
ment

Quantum computation and entanglement

This survey is aimed at researchers in the field of theoletimaputer science having only very limited

knowledge of quantum computation. We address the topicowinmunication complexity and pseudo-

telepathy, as well as other problems of interest in the fiéldistributed computation. The goal of this

survey is not to be exhaustive but rather to cover many diffeaspects and give the highlights and intuition
into the power of distributed quantum computation. Othéavant surveys are available [49, 14, 20, 16].

In classical computation, the basic unit of informatiorhis bit. In quantum computation, which is based
on quantum mechanics, the basic unit of information isythi®t. A string of bits can be described by a string
of zeroes and ones; quantum information can also be in acdstate represented by a binary string, but in
general it can be isuperpositiorof all possible strings with differeramplitudes Amplitudes are complex
numbers and thus the complete description of a string @fibits require2™ complex numbers. The fact
that quantum information uses a continuous notation doempean that qubits are somewhat equivalent to
analog information: although the description of a quanttaiesis continuous, quantum measurement, the
method of extracting classical information from a quantuates is discrete. Only bits of information can
be extracted from an-qubit state. Depending of the choice of measurement rdifteproperties of the state
can be extracted but the rest is lost for ever. Another wagedlsis is that measurement disturbs a quantum
state irreversibly. In quantum algorithms, it is possilledmpute a function on all inputs at the same time
by only one use of a quantum circuit. The difficult part is tofpem the appropriate measurement to extract
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useful information about the function. We refer the readef4td, 41, 33] for introductory textbooks to
guantum information processing.

One of the most mysterious manifestations of quantum indébion isentanglementaccording to which
distant parties can share correlations that go beyond wlieasible with classical information alorguan-
tum correlations Entanglement is strange, useful and not completely utalgls Some of the results
described in this survey will shed light on this facet of qwam mechanics. In the absence of quantum
correlations (if two players do not share entanglement3, necessary to transmitqubits to convey: bits
of information [32]. When the players share quantum coti@ia, this can be improved t&n but not
more [25]. One would therefore think that quantum mecharacsot reduce the amount of communication
required in distributed tasks (by more than a constant)pr®&imgly, this intuition is wrong!

We are beginning to get the idea that classical informatimhguantum information are quite different.
As further evidence, note that classical information canally be copied, but quantum information is
disturbed by observation and therefore cannot be faithtdpied in general. Note that the fact that quantum
information cannot be copied does not imply that it cannateleported [12].

Quantum key distribution (QKD) [11] is one of the foundingués of quantum information process-
ing. This amazing breakthrough is an amplification protdoolprivate shared keys. Another result that
propelled quantum computation into the attractive areaséarch that it is today is Peter Shor’s factoring
algorithm [48], which is a polynomial-time algorithm to fac integers on a quantum computer. Note that
the best known classical algorithm, the number field sie3@, B5] takes time i©(2c""*(osm)**y where
n is the number of bits of the number to be factored. The impogaof this result is evidenced by the fact
that the security of most sensitive transactions on theretds based on the assumption that factoring is
difficult [47].

Since quantum information cannot, even in theory, be coged since it is very fragile in its physical
implementations, it was initially believed by some thabesiwould be an unsurmountable barrier to building
a quantum computer. Actually, this was the first and onlyogeritheoretical threat to quantum computers.
Fortunately, quantum error correction and fault toleramputation were shown to be possible with realistic
assumptions if the rate of errors is not too big. This impifes a noisy quantum computer can perform an
arbitrary long quantum computation efficiently as soon asesthreshold of gate quality is attained [4]. We
will not discuss quantum computer implementations but emention that experiments are only in their
infancy. Quantum communication is the most successfulepteday implementation, with QKD being
implemented by dozens of research groups and being coratigevailable [1].

We now begin a survey of the main results in distributed caatmn. We will not give the quantum
algorithms or protocols that solve the presented problehey, are usually quite simple. Most of the time,
the difficulty is to provide a proof of their correctness orstwow that a classical computer cannot be as
efficient.

Pseudo-telepathy

The termpseudo-telepathgriginates from the authors of [17] (although it does noteggn the paper).
It involves the study of a physical phenomenon that was ptesly studied by physicists [30, 40]. We
introduce this strange behaviour of quantum mechanics avstiory.

Alice and Bob claim that they have mysterious powers thablendiem to perform telepathy. However
surprising that this may seem, they are willing to provertbkiim to a pair of physicists that do not know
about quantum mechanics. Imagine that they are willing talseibstantial amount of money. To be more
precise, Alice and Bob do not claim that they can send emgithdught alone, but they claim that they
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can win the following game with certainty without talkingeach other. As you will see, their claim is very
surprising because it appears that it is impossible tofghtis

A magic square (see Figure 1) is a 3 by 3 matrix of binary digitsh that the sum of each row is even
and the sum of each column is odd. A simple parity argumentffecEnt to convince oneself that a magic
square cannot exist: since the sum of each row is even, theostime whole square has to be even. But
since the sum of each column is odd, the sum of the whole sdpasrto be odd. This is a contradiction and
therefore such a square cannot exist.

0|1|1
1/1/0
0[1|7?

Figure 1: A partial magic square. In a magic square, the susach row is even and the sum of each
column is odd.

In the game that Alice and Bob agree to play, they will behawgctly as if they actually agreed on a
collection of such squares (at least, in a context where ¢heyot talk to each other). The physicists will
prevent Alice and Bob from communicating during the gameeasysolution is to place Alice and Bob
several light years away. According to relativity, any naggsthey would exchange would take several years
to arrive.

To test the purported telepathic abilities, each physisigtaired with a participant. They then ask
simultaneously questions: Alice is asked a give a row of theese (either row 1, 2 or 3) and Bob is asked to
give a column (either column 1, 2 or 3). Each time the expanmirieeperformed, Alice and Bob claim to used
a different magic square. After a certain number of reettj the physicists get together and verify that
the sum of each row is even and the sum of each column is odemargbver that the bit at the intersection
of the row and column is the same. It is not so difficult to ses thAlice and Bob do not communicate
after the onset of the game, there is no strategy that wissgénine with probability more thasy9. This
is the outcome that the pair of physicists would expect. ekt they are astounded to see that Alice and
Bob always win, no matter how many times they repeat the gaftiee and Bob have managed to win
their bet and accomplish a task that provably requires comncation, but without communicating! Hence
the namepseudo-telepathyHow is this possible? Thanks to quantum mechanics, AliceBab can win
with probability 1. In addition to agreeing on a strategydsefthe experiment, Alice and Bob share enough
entangled particles. If you think winning such a game is antgzhen now you understand a bit more why
we consider entanglement to be such a wonderful and strasgence. This simple thought experiment has
very important consequences on our understanding of thieliwowhich we live, both in the physical and
philosophical perspectives [27, 9, 22].

More formally, a pseudo-telepathy game is a distributgulayer game where the players can agree on
a strategy and can share entanglement. While the playersoaadlowed to communicate, each player is
asked a question and should provide an answer. The game essth that quantum players can win with
probability 1 but classical players cannot. The example mesgnted comes from [7]. We refer the reader
to a survey specifically on this subject [16].
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Communication complexity

Communication complexity is the study of the amount of comitation required to compute functions on
distributed data in a context of honest cooperating playevgas first introduced by Harold Abelson [3] and
given in its current form by Andrew Yao [52]. A good referermeclassicalcommunication complexity is
[34]. There are several variations of the basic model; hgesgoncentrate on the most natural one. Eet
be ak-input binary function. We are in a context where thelayers each have one of the inputs to the
function. Theprobabilistic communication complexity is the amount of bits that have édloadcast by
the players in order for player number one to be able to coemputvith probability at leasg/3 (in the
worst case). We assume that the players share some randoandithat they cooperate. The valy8 is
arbitrary and can be very efficiently improved by parallglatition. Note that in this model, we do not care
about the computational complexity for every player, bugémeral the computation required by the players
is polynomial. The trivial solution that works for all furichs is for each player (except the first one) to
broadcast his input. We will see that sometimes, but notydwihe players can do much better.

Let us illustrate the concept with a simple example. Suppasaave two players, Alice and Bob, who
each have a huge electronic file and they want to test if theséantical. More formally, they want to
compute the equality function. If one insists that the pholigt of success be 1, then Bob has to transmit
his entire file to Alice: any solution would require an amoohtommunication equal to Bob's file size.
Obviously, if we are willing to tolerate some errors, thes@imore efficient solution. Latbe Alice’s input
andy be Bob’s, and assume Alice and Bob shara random string of the same lengthuaandy. If = = v,
obviouslyz -z = y - z but itis not too hard to see thatif+£ y, the probability that: - = = y - z is exactlyl /2
(here,x - z is taken to be théinary inner product: the inner product aefand z, modulo 2). In order for
Alice to learn this probabilistic information, Bob only himssend one bit. By executing this twice, we have
that the function can be computed correctly with probabiit4.

One might argue that we are cheating by allowing Alice and ®athare random bits and not counting
this in the communication cost. We have decided to condentrathis model since it is natural to compare
it to the quantum case. Also, in general, if Alice and Bob dbsfare randomness, they can obtain the same
result only with an additiondbg n bits of communication [43].

Yao is also responsible for pioneering work in the aregudntumcommunication complexity [53], in
which he asked the question: what if the players are alloweminmunicate qubits (Qquantum information)
instead of classical bits. No answer to this question waisiityi advanced. In [23], Richard Cleve and Harry
Buhrman introduced a variation on the model, for which thegvwged a separation between the classical and
guantum models: the players communicate classically layt $hare entanglement instead of classical ran-
dom strings. This time, the goal is to compute the functiothwertainty. They exhibited a function (more
specifically, arelation, also called gromise problemfor three players such that in the broadcast model,
any protocol that computes the function requires 3 bits ofirvminication. In contrast, if the players share
entanglement, it can be computed exactly with only 2 bitslassical communication. The function they
studied is not very interesting by itself but the result iwtationary: we knew that entanglement cannot re-
place communication, and what this result shows is thahgigaent can be used to reduce communication
in a context of communication complexity.

Harry Buhrman, Wim van Dam, Peter Hgyer and Alain Tapp [21jroved the above result by ex-
hibiting a k-player function (again with a promise) such that the comication required for computation
with probability 1 is in©(k log k), but if the players share quantum entanglement, it @ k). They also
showed that it is possible to substitute the quantum ergamght for guantum communication, resulting in a
protocol still withO(k) communication. This was the first non-constant gap betwaantgm and classical
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communication complexity. Once more, the function that staslied is not natural.

Quantum teleportation [12], shows that two classical Hitsoonmunication, coupled with entanglement,
enable the transfer of a qubit. Applying this, we get that @vy-player protocol using quantum communi-
cation can be simulated by a protocol using entanglementlkasdical communication, at the cost of only
doubling the communication.

The first problem of practical interest where quantum infation was shown to be very useful is the
appointment scheduling problem. For this problem, Alice a appointment calendar that, for each day,
indicates whether or not she is free for lunch. Bob also has\Wih calendar, indicating whether or not he is
free. The players wish to know if there is a day where they atl fiee for a lunch meeting. In the classical
model, the amount of communication required to solve thélpro is inO(n). In the quantum model, this
was reduced t®(y/n logn) in [19], and further improved t®(y/n) in [2].

The first exponential separation between classical andtgeanommunication complexity was pre-
sented in [19] but it was in the case where the function mustopeputed exactly. Later, Ran Raz gave an
exponential separation in the more natural probabilistoxieh that we have presented, but for a contrived
problem [46]. See also related work [28]. Note that not alictipns can be computed more efficiently using
guantum communication or entanglement; this is the cadsedbihary inner product [25].

Other communication games

Fingerprinting

This interesting result was introduced in the context of camication complexity but is of general inter-
est. It was shown in [18] that to any bitstring or message,iquenand very short (logarithmic) quantum
fingerprint can be associated. Although the fingerprint ty weall and generated deterministically, when
two such fingerprints are compared, it is possible to detegmiith high probability if they are equal. The
concepts of quantum fingerprinting were used in the contegqtiantum digital signatures [29].

Coin tossing

Moving to a more cryptographic context, one of the simplest eost useful primitives is the ability to
flip coins fairly in an adversarial scenari8trong coin tossingncompasses the intuitive features of such a
protocol: it allowsk players to generate a random bit with no bias (or an expagngmall one), where
bias is the notion of a player being able to choose the outcome. tiiial method of allowing a single
player to flip a coin and announce the result is biased: theeplzould choose the outcome to his advantage.
It is possible to base the fairness of a coin toss on compugtassumptions: this is due to the fact that
bit commitment can be used to implement coin toss and thabhimitment itself can be implemented with
computational assumptions [26]. However, we know that wqueantum computers become available, some
of the assumptions on which these protocols are based viditumately become insecure. Is there a way to
implement a coin toss using quantum information? It was shiayvAndris Ambainis [5] that if two players
can use guantum communication, this task can be approxdniatsome extent without computational
assumptions. If both Alice and Bob are honest, the coin fliblve fair, otherwise one player can bias the
coin toss by 25% but no more. This is almost tight since it wasgn that in this context, the bias cannot be
reduced lower than approximately 21% (this result is duenfmiblished work of Alexei Kitaev; see [31] for
a conceptually simple proof). This lower bound discourageantum cryptographers but it was misleading.
In a context where the coin toss is used to choose a winnerrfanatural application), then we know in
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which direction each player is trying to bias the coin tosstp8singly, in this context, quantum protocols
exist that have arbitrarily small bias [42]. See also [13]ddoss-tolerant protocol.

Quantum proofs

An area of theoretical computer science that is very impbdad related to complexity is the field pfoofs
The concept of short classical proofs for a statement isucagtby the complexity clagsP and is the most
natural. We know that many difficult problems actually hakers witnesses or proofs. Can we generalize
this concept in a useful and meaningful way to the quantundd®diVhat would be a quantum proof? Would
it be useful?

In a seminal paper by John Watrous [51], a specific problemmmnon-membership, was shown to
have short quantum proofs. It is not known (and believed toripossible) to come up in general with a
short classical proof that an element is not part of a groupnithe description of the group is given as a list
of generators. What is amazing is that there exist quantataessthat can be associated to such a problem
that are short quantum proofs. More specifically, if thefi@rhas a quantum computer, there is a quantum
algorithm that will efficiently verify the witness: if the@ment is in the group, no quantum state will make
the verifier's algorithm accept with non-negligible probiyy whereas if the element is not in the group,
there is a quantum state that will make the algorithm accéptpvobability 1.

Classical simulation of entanglement

In previous sections, we presented several examples whargement can be used to solve distributed
computing problems more efficiently. In physics and compsdééence, an active area of research is dealing
with the opposite problem, the simulation of entanglemesimgi classical communication. The objective
is to exactly reproduce the distribution of measurementaues, as if they were performed on entangled
qubits. The distant players are assumed to share contimaod®m variables; otherwise it is known to
be impossible. The first protocol to simulate a maximallyaegted pair of qubits using classical commu-
nication was presented in [39]. The protocol uses an exgekct®l bits of communication but to be able
to simulate a maximally entangled pair of qubits perfedthg amount of communication is not bounded.
In [17], a simulation was presented using exactly 8 bits ehicmnication and this was later improved to 1
bit [50].

In general, looking at the classical communication comiplefwvith shared randomness) for pseudo-
telepathy games tells us how difficult it is to simulate egtament. Using this idea, it is proved in [17] that
n maximally-entangled qubits require an exponential amoficommunication to be simulated perfectly.
Some protocols actually exist that accomplish this alnighktly with an expected amount of communication
for generalmeasurements [38].

Protocols for quantum information

If we choose to deal with tasks involving quantum informatinstead of classical information, there are a
lot of results and possibilities. Quantum teleportatiothesmost famous [12], but all sorts of channels have
been studied for quantum communication. On the cryptograjgte, we know protocols to encrypt [6] and
authenticate quantum messages [8]. It is possible to penfioulti-party computation with quantum inputs
and outputs in a secure way [10]. It is also possible to anaughy transmit quantum messages [15].
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Conclusion

We have given the reader a glimpse of distributed computinidpé quantum world. Following the main
lines of our survey, we now present a partial list of open tjaes.

Characterization of games that exhibit pseudo-telepafine way to recognize a pseudo-telepathy game
is to find a perfect quantum strategy and then show that teere such classical strategy. We would like a
more natural way to recognize such a game, relying more oarttlerlying structure of the game.

Quantum parallel repetitionWhat is the best probability of success for Alice and Bob wieoiavolved
in manyparallel instances of the same game, using entanglement? For plashioal games, the proba-
bility of success decreases at an exponential rate [45]uigsising as it sounds, the probability does not
decrease at the same rate as one might expect and this sefulfiom being trivial). This question asks
whether or not there is a similar theorem for the case thapldngers use shared entanglement. A special
case was answered in the affirmative by [24].

Quantum communication complexity: qubits versus entamgid. As mentioned, we know that tele-
portation can be used to transform any two-player protosoiguiquantum communication into a protocol
using entanglement, at a cost of only two classical bits pbitdn the original protocol. This question asks
whether or not we can do the same thing, up to a constant factiwe otherdirection. Related work in this
direction includes [37], where it is shown that in a slighdi§ferent scenario, there exist tasks for which no
finite amount of entanglement yields an optimal strategy.

Simulation of multi-party entanglemerih contrast to the two-party case, very little is known abibiat
simulation of multi-party entangled states. In particuiis not even known if this general task is possible
with bounded communication.
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Abstract

Quantum computing and distributed systems may enter a thuhemeficial partnership in the fu-
ture. On the one hand, it is much easier to build a number ofl s;pantum computers rather than a
single large one. On the other hand, the best results cangesome of the fundamental problems in
distributed computing can potentially be dramatically impged upon by taking advantage of the superior
resources and processing power that quantum mechanics.offais survey has the purpose to high-
light both of these benefits. We first review the current tiss@lgarding the implementation of arbitrary
quantum algorithms on distributed hardware. We then dgsseisting proposals for quantum solutions
of leader election — a fundamental problem from distributechputing. Quantum mechanics allows
leader election to be solved with no communication, prodittet certain pre-shared entanglement is
already in place. Further, an impossibility result fromssiaal distributed computing is circumvented
by the quantum solution of anonymous leader election — ausligader is elected in finite time with
certainty. Finally, we discuss the viability of these preals from a practical perspective. Although,
theoretically, distributed quantum computing looks preinmj, it is still unclear how to build quantum
hardware and how to create and maintain robust large-sotd@@led states. Moreover, it is not clear
whether the costs of creating entangled states and workithglwem are smaller than the costs of exist-
ing classical solutions.

1 Introduction

In recent years, quantum computing has been widely adedras the next ground-breaking technological
innovation that holds the promise to fundamentally chamgeway we do computing. Futurists and lay
people, as well as serious researchers from several digersatific areas, have been fascinated by the
potential advantages that quantum computing shows.

But harnessing the counter-intuitive laws of quantum meidsahas proven to be a hard practical prob-
lem. Today there are just a few successful implementatiérssnall quantum computers. Unfortunately,
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scalability is an insurmountable problem for all of them,iethis why they are used only for trivial com-
putations to illustrate the potential advantages of quardgilgorithms. Consequently, some of the research
that we discuss in this survey is motivated by the possittititovercome the scalability problems of current
technology. Such a goal can be achieved by using a colleofismall quantum computers to solve prob-
lems in a distributed manner via casting known centralizgdrahms into their distributed versions. We
discuss this strategy in Section 4.

Distributed systems can benefit from quantum technology el assuming the ability to efficiently
create and reliably use quantum entanglement. The phemmudrentanglement counter-intuitively inval-
idates the notion dbcal realismby creating non-local relationships between quantum tbjad blurring
the physical state until a measurement is done. Considériaogentangled particles, the state of each of
them is a superposition of the possible values of some pllygioperty and the joint state cannot be de-
composed into a product of single-particle states. Noaligcis manifested by the fact that a measurement
done on one of the particles not only collapses the supdigosif the initial guantum state of the measured
particle to a single definite value, but it also instantarsgouollapses the state of the other particle to a cor-
responding definite value, regardless of the spatial stparaf the two particles. It is this “spooky action
at a distance” that strongly disturbed Einstein [13] but wasgertheless confirmed later [1]. Entanglement
is briefly discussed in Section 2.3, but a far more detailedttnent can be found in [24].

The theoretical proposals that we overview in Section S affgressive solutions for leader election —
a fundamental problem that sometimes can be a performamtbertsak, because it has to be routinely solved
in distributed computing. Section 5.1 presents quantuniisols for leader election without communication
but with entanglement that has been shared among the patiig processors. There is one main trick
that makes these schemes work: choosing the specific formtahglement in a way that ensures that
measuring the entangled particles results in a collapseldabktate that satisfies the requirements for a
valid solution. Section 5.2 and Section 5.3 consider thenamous version of leader election and show
how an impaossibility result [21] from classical distribdteomputing is violated in the quantum world —
a unique leader in an anonymous network is elected in fimte tivith certainty. Classically, anonymous
leader election in networks with arbitrary topology is smlwvith high probability by randomization [21,
33]. However, in the quantum world, entanglement can be tsdateak symmetry even in completely
symmetric networks. Section 5.2 uses the same strategeah@red entanglement as Section 5.1. Section
5.3 presents a more intricate algorithm that does not asangnpre-shared entanglement but uses quantum
communication to create certain entangled states that tloeuessarily guarantee that the leader is chosen
in a single step. Nevertheless, they guarantee that a leadkeosen with certainty after a finite number of
steps of gradual symmetry-breaking. The main trick heraigtum amplitude amplification [4], which is
also the essential technique that is used in Grover’s sedgchithm [17]. We briefly introduce quantum
amplitude amplification in Section 2.4.

The quantum solutions of distributed problems are quita@sgive, but in practice there are very serious
problems related to the implementation of useful quanturicds. Quantum entanglement appears as a
basic requirement for the functioning of any quantum atganithat claims any advantages over its classical
counterpart, which motivates the conjecture that entanghd is the fundamental source of all quantum
speedups [18, 19, 20, 15]. It appears that quantum entargtama new fundamental resource, the likes of
which have never been known in classical computing. Thecdifff here is that a complete understanding
of entanglement has not been achieved yet. Simple casdsavitbeen explored by experimental physicists
[23, 11, 34, 26], but nobody has attempted to build the |sgpe entangled states that are assumed for the
solutions of leader election. As a consequence, we cuyreiatinot know whether the costs of creating,
using, and maintaining entanglement do not outweigh thearmtdges that it offers. For example, in the
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context of leader election, it might very well be the case #rdangling a set of processors is harder than
simply a-priori choosing a leader and equipping each psmresith knowledge about the chosen leader. In
the context of anonymous leader election, the additionsil a@bquantum processing brings up the question
whether it is worth having a quantum algorithm that electgigue leader in finite time with certainty when
there are more efficient classical algorithms that solveptimdlem with high probability. Moreover, the
anonymous leader election algorithm that we present in@ebt3 suffers from two additional drawbacks:
(i) The crucial underlying technique of quantum amplitudepdfication may not be implementable at a
constant cost as the algorithm assumes; (ii) Its physicpldmentation may not be able to preserve the
theoretically promised certainty of always electing a ueriégader in finite time.

We assume that the reader is familiar with the basic conadptistributed computing. Comprehensive
discussions on the existing classical algorithms for leadiection can be found in [33, 21]. In the next
section we give a basic and by no means complete introdutdidhe relevant background in quantum
computing. We restrain ourselves just to defining the ekdeterms and concepts that are crucial for
understanding our subsequent discussion.

2 Quantum Computing Background

2.1 Quantum States

A comprehensive introduction to quantum computing can beaddn [24]. The qubit, the quantum version
of the classical bit, is defined in two-dimensional complexter space. Dirac notation is the accepted
standard notation: two of the possible states for a qubiam@nd|1), which are known as the computational
basis states corresponding to the classical logical vaii@ésand1. Sometimes their vector representations
are used]0) = ( (1) > and|1) = (1) ) The novelty here is that a qubit can be in many other states as
well—different superpositions of th@) and|1) basis states. In fact, there is an infinite number of possible
quantum states, because a general quantum state is of theufpr= «|0) + 3|1), wherea, 3 € C are

the probability amplitudes of the corresponding compamenthe superposition and they have to obey the
normalization ruleja|? + |3|? = 1. Even though a qubit can be simultaneously storing two kigialues,
when a measurement in th®, |1) basis is performed on it, the outcome is either one of thenrmbuboth.
After a measurement is performed, and a classical bit isroddefrom it, we say that the quantum state has
been collapsed. The role of the probability amplitudes bexapparent when we collect statistics about
the measurement results for a multitude of identically prep states. The square of the absolute value of
a probability amplitude predicts the portion of the totafmer of measurements where the corresponding
component is observed as the resulting collapsed state.

The joint state of multiple qubits is described by the termmduct ) of the single-qubit states of
the individual qubits. For two vectors andy of dimensionsm andn, x ® y is a vector of dimension
mn. For example|y) ® |¢), the two-qubit joint state of qubitg)) and|¢), is a vector of dimension 4
because the single-qubit states are vectors of dimensiorh2.2 symbol can be omitted whenever the
tensor product (multi-qubit state) is obvious, so the notafor this example can also e, ¢) or |¢¢).
Also, [1)®* = |y) @ |1) ® ... ® |¢) denotes &-qubit state in which all individual qubits are in the state

_ k times
|1) simultaneously.
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2.2 Quantum Gates

A quantum gate transforms the state of a quantum system. glesijubit input state of the general form
a|0)+/3|1) is transformed tey|0)+-6|1), wherey andé depend ony, 3, and the definition of the transforming
gate. By the laws of quantum mechanics, any such transfamaiust be unitary, i.e. any-qubit quantum
gate must be representable a&’ax 2" matrix U, whereUU = I andU" is the conjugate transpose of
U. The action of a gate on an input state is described by megaker multiplication:Gx = y, whereG is
some quantum gate,is the input, and, is the output. Because unitarity is the only restriction aamgum
gates, there is an infinite set of possible quantum gategribyta small subset of them are used often and
have become standardized. The standard quantum gateseheteal in our subsequent discussion are the
Z (corresponding to the Pauli Z matrix), Hadamard, rotgtaamtrolled-NOT (CNOT), and swap gates. We
refer the reader to [24] for descriptions of the other stashdgtes.

The Z and Hadamard gates are single-qubit gates: < (1) _01 ) andH = % < 1 _11 ) The
matrix-vector multiplication of the matrix for the Z gatettvithe vector representations|06fj and|1) shows
that the Z gate does not change tbg basis state and multiplies by1 the |1) basis state. Similarly,
the Hadamard gate output®) + |1))/v/2 when the input ig0) and (|0) — |1))/+/2 when the input is
|1). Because of the linearity of quantum gates, when the inpobigust one of the basis states but some
superposition of them, the output consists of the supethastion of the gate on the basis states that
compose the input state. For example, the output of the Zagatiee(|0) +|1))/+/2 input is(|0) —[1))/v/2.

A rotation gate performs a phase rotation by an arbitraryesimgthe Bloch sphefe Rotation gates form a
family of quantum gates, which serves as a generalizati@il sfhgle-qubit gates.

| ) —— | 2) ———
ly)—D— |y ——
i b

Figure 2: CNOT and swap gates.

The CNOT gate (Fig. 1a) has two inputs: the input is calledcontrol and the|y) input is target
The gate performs addition moduboof the control and target qubits, stores the result in thgetaqubit,
and leaves the control qubit unchanged. In other words,attget is inverted when the control |is) and
is left unchanged when the control |&, while the control always remains unchanged. Again, when th
input is a superposition of the basis states, the output igoarposition of the actions of the gate on the
corresponding basis-state components of the input stateexample, when the input to the CNOT gate
is (]00) + |11))/+/2, the output i(|00) + |10))/+/2. This is so, because th@0) component of the input
superposition is left unchanged by the gate (the contrd))sand the|11) component is transformed to
|10) (the control is|1), so the target is inverted). The operation of the swap gate (Eb) is even more
straightforward: the two inputs are simply exchanged.

Nielsen and Chuang provide in [24] a formal proof that the ONfd general single-qubit gates form a
universal set for guantum computation, i.e. any quanturardilgn can be expressed as a circuit consisting

1The Bloch sphere is the three-dimensional unit sphere. Amglesqubit quantum state can be represented as a pointeon th
Bloch sphere, which is why this simple abstraction has ti@utlly served to describe single-qubit states and anlyitiransforma-
tions on them.
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only of these gates. They also show that there exist unitarnstormations that require compositions of
exponential numbers of gates from the universal set. Fanpia the unitary transformation that solves an
NP-C problem may require exponentially many such gates. édew the goal of quantum computation is
exactly to find interesting transformations that can begraréd more efficiently than what is possible in
the classical world.

2.3 Quantum Entanglement

Quantum entanglement involves the joint state of two or nuprgits. Informally, we say that when a
collection of qubits is entangled, they are non-locallyretated in the sense that performing a measurement
on one of them instantaneously affects the state of the (@h&ven when there are arbitrarily large spatial
separations between individual qubits.

However, there is an immediate concern that the presenaaneliocal correlations in entangled systems
might be implying the possibility for super-luminal sigimag, i.e. being able to communicate faster than
the speed of light. Fortunately, this apparent conflict withert Einstein’s Theory of Relativity [12] has
been settled down by the No-Signaling Theorem [9, 27], wiicdves the impossibility to directly use the
instantaneous effects of quantum entanglement to transeitl information. As it turns out, entanglement
alone cannot be used for communication. On the other hanttheitase of quantum teleportation [24],
communication of quantum states is achieved with the hetdasfical signaling, which is clearly bounded
by the speed of light.

There are two types of entanglement that we are interested the purposes of distributed computing:
GHZ [16, 8] and W [8]. A collection of qubits can be entangled in anpartite GHZ state of the form:

[v) = (]000...000) 4 [111...111))/v/2 (1)

Then-partite W state, on the other hand, looks like this:
|v) = (]00...01) +]00...10) + -+ + [01...00) + |10...00))/v/n (2)

It is not difficult to see that these two types of entanglenastquite different from each other. They
exhibit different degrees of “persistency”. Notice thdtdadlthe qubits in the GHZ state are collapsed to a
definite state|()) or |1)) by measuring exactly one of them. In contrast, destroyegentanglement of a W
state requires in general— 1 qubits to be measured, because for any fixed qubit, it hagiestomponent
that can give a measurement result of 1 and 1 components that can give a measurement result of 0.
Hence, if measuring one qubit gives 0, only a single compboktihe superposition is eliminated (the one
that represented the possibility of measurement resuly, dfutn — 1 more components remain superposed.

Fig. 2 shows the circuit that creates a 2-partite GHZ stds® (enown as a Bell pair or EPR pair). The
initial state of the two qubits i§0). The Hadamard gate puts the control qubit in an equal supitiqra
(10) + |1))/+/2, so the joint state becomég0) + [10))/v/2. Now the CNOT gate is applied: the first
component of the superposition does not change, becausmitel qubit is|0), but the target in the second
component becomes) because the control i8). As a result, the final state {$00) + [11))/v/2. This
entangled state can be augmented with more qubits by makicly @& them the target of a CNOT gate
controlled by any of the already entangled qubits.

2.4 Quantum Amplitude Amplification

Quantum amplitude amplification appears as the essentlaitue in Grover’s search algorithm [17]. An
unstructured database is searched for an item that matahesarch criteria according to some oracle. If the
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Figure 3: Locally entangling two qubits.

database is of size and there aren items that match the search criteria, the necessary nunikstepas for
finding one of then items isQ2(n/m) according to the classical lower bound. However, Grovdgerithm
succeeds with high probability in jug?(y/n/m) steps by using quantum amplitude amplification. The
algorithm starts by preparing a uniform superposition dfitaims in the database. At this point, if the
quantum state is measured, there is onlynafm chance of obtaining one of the desired items. Grover's
algorithm does not do that, but instead, it proceeds in a mumbsuccessive steps of gradually increasing
the amplitudes of the desired item(s) at the expense of tipditahes of the rest of the items in the database.
The novelty here is that jus/n/m such steps are enough to boost the amplitudes ofitlgeod items, so
that a measurement in the end yields one of them with highgtnitity.

Grover’s algorithm is just one application of quantum anole amplification, which is generalized in
[4]. In general, this technique allows the amplitudes ofsgrocomponents from a superposition state to be
amplified at the expense of others, whose amplitudes geiuaiied. For example, consider thgubit state
consisting of qubitsgo) = (0) + [1))/v/2 and|q1) = ([0) + [1))/v/2: [¢) = lao,a1) = ([0) + [1))([0) +
|1))/2 = (|00) + |01) + [10) + |11))/2. In this state, all of the four possible components are pgsed
with equal amplitudes. However, if the Hadamard gate isiagfb |¢o), the 2-qubit state becomes’ =
lgh, q1) = (|00) + |01))/+/2, because the Hadamard gate transforms the gigte= (|0) + |1))/v/2 into
lg) = |0). Clearly, the amplitudes of tj60) and|01) components ofp) are amplified at the expense of the
|10) and|11) components, whose amplitudes get obliterated. Furthplyiag a Hadamard gate tg;) as
well transforms the state’) into |¢”) = |q{,, ¢}) = |00). Now, from the point of view of quantum amplitude
amplification, the statg)”) is obtained from¢) by maximizing the amplitude of th0) component at the
expense of the rest of the component$dof

In the anonymous leader election algorithm that is preseint&ection 5.3, quantum amplitude ampli-
fication is used to achieve symmetry-breaking even in complesymmetric networks. The starting state
is a superposition of symmetric components, whose amplitugkt obliterated to the benefit of resulting
asymmetric components. When that state is measured andrestyyris materialized, the processors can be
divided in at least two non-overlapping non-empty groupsictv allows a leader to be chosen with certainty
within a finite number of such steps.

3 Models for Distributed Quantum Computing

Here we define the models for distributed quantum computiagdre used by the research that we review
later. A common assumption for all of them is that there aréntiy processors.

Section 4 and Section 5.1 use a standard distributed netwitinkarbitrary topology and the added
capability of individual processors to store, manipulaed measure quantum states as well as classical
states. The only means of communication between proceasmidassical channels that can transmit only
classical information (bits). The restriction of only uginlassical communication while being able to do
guantum processing locally is known lascal Operations and Classical Communication (LOCQ)e size
of a message is assumed to be bounde®fyg n), and communication does not need to be synchronous.
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An important requirement is that a sufficient amount of egkament is created between processors at
the time the network is set up. This is subsequently refaimeakpre-shared entanglemeniNo a-priori
knowledge is assumed. We refer to this moddl@CC-ENTANGLE

Section 5.2 uses a model that has all of the featurdsOsf C-ENTANGLEwith the only difference
that here the network is anonymous. Anonymity means thatithehl processors are not guaranteed to
have unique identities, so in a problem such as leader efedtientity information cannot be used as a
tie-breaker in order to guarantee correct solutions. Télisng can be motivated by the situation in which
a large number of generic sensors with no identities arechatad from a plane and subsequently need
to organize themselves for the purpose of conducting someetation. This model will be known as
LOCC-ENTANGLE-ANON

Section 5.3 is also in the anonymous setting, but here gmachannels are present in the sense that
individual processors can send and receive quantum intaymégubits) to and from other processors.
Further, pre-shared entanglement is not assumed in SécBoithe algorithm presented there is formulated
in a synchronous setting but can be modified to work in the @symously as well. The only a-priori
knowledge that individual processors need is the total rrmab processors in the network or an upper
bound of it. We refer to this model &COMM-ANON

It is clear that the assumption of pre-shared entanglersarttia trivial one. Entanglement is the essen-
tial resource that allows quantum advantages to be matedal Currently, building large-scale distributed
entangled states has not been attempted, which is why ittislear how efficiently they can be created
and whether the costs of creating them are not larger thandt@ntages that they provide. Therefore, if
guantum technology is ever to be used in a distributed mainngractice, future research must focus on
providing pre-shared entanglement as a sufficiently efftgigimitive. In subsequent sections we discuss
different schemes for satisfying that assumption:

e Locally creating entangled pairs and exchanging qubite ngighbors if quantum channels are avail-
able (Section 4). Cost: one communicated qubit per shareahgled pair.

e Augmentingn — 1 pre-shared entangled pairs to apartite GHZ state by using non-local CNOT
gates in a binary-tree-like fashion (Section 4). Cé3tn) classical communication.

e Obtaining ann-partite GHZ state fronn — 1 pre-shared entangled pairs that are distributed in a
spanning-tree-like fashion (Section 5.1). Ca@s{n) classical communication.

The lack of complete knowledge about entanglement alsoesails use in the anonymous settings
of Section 5.2 to be questioned. In the motivating scendrianonymity, the individual sensors do not
have unique identities, because they have to be very chehparsume very little power, which is why
they cannot have any processing capabilities beyond whalbgslutely necessary. Therefore, it is not
clear whether it is fair to assume that such processors ca@nebentangled and given quantum-processing
capabilities when they cannot even be afforded individd@nhtities. Further, the total lack of failures cannot
be practically guaranteed in such a scenario, which wowd thake the algorithms unusable.

4 Distributing Centralized Quantum Algorithms

Suppose there is an extremely useful centralized quantgoritim, but only small quantum computers
with just a few qubits each are available. If one is to do stingtuseful with the algorithm, one has to find
a way to distribute it over a collection of small quantum caoneps. The specific challenges related to that
and how to overcome them are described in [14, 36].
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To the best of our knowledge, Eisert et al. in [14] were the fopropose a solution to such a situation
together with proving optimality of the resource and comination requirements of their solution. In
general, the hurdles that one has to worry about in any gpdfra centralized algorithm to a distributed
setting are related to how to divide the problem into pieaas lzow to arrange for coordination between
the individual computations. Local computations need tmmanicate with other parties at different times,
which unavoidably incurs considerable communication logad. Eisert et al. use th®CC-ENTANGLE
model.

The general strategy of distributing a centralized quarailgorithm is to take the quantum circuit that
represents the centralized algorithm and draw horizomteklthat delineate the boundaries of each local
computation. For example, one can distribute the CNOT gee twvo different computers by having the
control qubit at one computer and the target qubit at andfigr 3).

ly) —P—

Figure 4: Distributed CNOT gate: The control and target ateva different computers.

Recall the universality of general single-qubit gates dr@l @NOT gate. It is clear that single-qubit
gates do not induce any non-local interactions. Hence, tihe gate that requires special treatment in
the distributed context is the CNOT gate. Since all of theeotimulti-qubit gates that are of practical
interest can be reduced to CNOT and single-qubit gates, iiieébdted CNOT gate is the necessary and
sufficient primitive for building any distributed quantunrauit. Eisert et al. show a simple circuit (Fig.
4) for the distributed version of a CNOT gate and prove tha bit of classical communication in each
direction and one previously shared entangled pair forncassary and sufficient condition for a non-local
implementation of the CNOT gate (assuming only LOCC). Int,fétweir circuit is a variation of quantum
teleportation [24].

(@

A10— Dy
i

P
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Figure 5: Circuit implementing the distributed CNOT gatédeTectangles delineate the two main parts of
the circuit: “cat-entangler” and “cat-disentangler” asiied by Yimsiriwattana and Lomonaco Jr. [36, 35].
The horizontal line delineates the separation betweenttbedmputers.

In Fig. 4, qubitsA and A1 are located at one party and qubifsand B1 are at another partyA is
in some arbitrary quantum state and its purpose is to act amteot to the CNOT gate o3, where B
is assumed to be in some other arbitrary quantum state. Tevacthat, the two parties use a previously
shared entangled paid( and B1) to entangled with B1, so thatB1 can act as a local control qubit for
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the CNOT gate that is applied d. This is done by applying a CNOT gate betwegéand A1, measuring
Al, sending the measurement result as a classical bit to tke pdinty (dashed line on the figure), and using
it as a control to the CNOT gate &tl. At that point, A and B1 are entangled, from which it follows that
B1 acting as control for the CNOT oB would be exactly as ifA was the control. After that, a Hadamard
gate and a measurement are appliedddn after which the result is sent as a classical bidtowhere it

is used to control the application of a Pauli Z gate. Theseskaps are performed in order to disentangle
B1 and A, i.e. to completely restord to the state in which it was at the beginning. In the procdss, t
initially shared entanglement between the two parties $¢rdged, and two classical bits are communicated
in both directions. The paper by Eisert et al. gives moreildeddout this circuit, including a step by step
tracing of the intermediate states to show the desiredtrasthe end. Since the CNOT gate is the only
multi-qubit gate in the universal set, its distributed V@nss enough for implementing any quantum circuit
in a distributed manner. Because the distribution concenhsthe control qubit, the same technique works
for any other controlled gate.

Eisert et al. in [14] also make the observation that gengrile required resources in terms of classical
communication and entanglement are proportional to thebeurof distributed CNOT gates that are used,
but as they point out, there may be remarkable exceptionsexXample, when derived from the universal
set, the swap gate requires three CNOT gates as shown in FighiS means that three entangled pairs
and six classical bits of communication are the cost of imgleting the swap gate by means of CNOT
gates. On the other hand, it is rather intuitive that the sgeatp’s operation (simply exchanging the two
input qubits) can be achieved by doing two teleportatioasheof which requires only one entangled pair
and the communication of two classical bits — a total of twtaagled pairs and four classical bits, which
is significantly cheaper than the first approach. The authaggest that there may be other such cases that
require fewer resources than what is required by the stifaigbard usage of the universal set.

|2) P

A A
lv) — D

Figure 6: Swap gate implemented with three CNOT gates.

Yimsiriwattana and Lomonaco Jr. [36, 35] build on the work&idert et al. by distinguishing the two
main parts of the distributed CNOT circuit, giving them treames “cat-entangler” (the first rectangle drawn
in Fig. 4) and “cat-disentangler” (the second rectangleig4}, and introducing the notion of “cat-like”
state as the state that results from applying the cat-eletaoiy a general quantum state. The cat-like state is
transformed back to the original quantum state after thelisagintangler is applied on it. Their nomenclature
is useful in terms of abstracting the basic parts of the ttirsa that they can be used as primitives in a simple
manner later on, but the fundamental ideas were originatdeidert et al.

Yimsiriwattana and Lomonaco Jr. also attempt to come tosgwih the assumption of pre-shared
entangled pairs between parties that share non-local.gatesy propose several methods for creating the
entangled pairs. One of them starts out by having each pacglly create an entangled pair by using a
Hadamard gate together with a CNOT gate (Fig. 2). After théssh party exchanges one of the qubits of
its entangled pair with another party, and after a sufficremhber of such exchanges, the global state is
ann-partite GHZ state if» parties are involved. This approach requires the abilitghgsically transport
the particles that carry the qubits — a quantum communicati@nnel. However, the presence of quantum
communication channels contradicts the assumptidrtOgE Cthat is used in Eisert et al.'s proof of necessity
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of entanglement.

The other possibility for satisfying the pre-shared enlamgnt assumption according to [36] is to use
a Hadamard gate locally at one of the involved parties andjaesee of non-local CNOT gates that span
the rest of the processors in a binary-tree-like fashiog.(6). Note that this approach requires a pre-shared
entangled pair for each of the non-local CNOT gates. Hena though the assumption of the pre-shared
n-partite GHZ state is alleviated by this strategy, therdiisthe need to somehow prepare entangled pairs
for the non-local CNOT gates that make this scheme work. tn 6, we assume that the circuit starts
in the statg00000000). After applying the Hadamard gate to the first qubit, thetjstate at point ‘a’ is:
(00000000) + [10000000))/+/2. After applying a CNOT gate on qubit 5 with control qubit letstate at
point ‘b’ is: (]00000000) +|10001000))/+/2, because qubit 5 gets inverted whenever qubit 1 (the corgrol
|1). Similarly, after applying CNOT gates on qubits 3 and 7 witintrols 1 and 5, respectively, the state at
point ‘c’ is: (]00000000) + |10101010))/+/2. Finally, CNOT gates are applied on qubits 2, 4, 6, and 8 with
controls 1, 3, 5, and 7 respectively. The resulting finaksimthereforg |00000000) + [11111111))/+/2. It
can be easily seen that this scheme reduces the task ofiglstadphnn-partite shared GHZ state to obtaining
n — 1 entangled pairs that are shared among parties in a biregylike fashion. The time complexity is
log n — the height of the binary tree — and the classical commuiaicas 2(n — 1) because each non-local
CNOT gate communicatesbits.
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Figure 7: Creating an-partite distributed GHZ state.

Finally, Yimsiriwattana and Lomonaco Jr. [36, 35] give twm@f-of-concept examples (the quantum
Fourier transform and Shor’s algorithm [24, 28]) as dirggplecations of the distributing technique. They
illustrate the straightforward observation that any cdited quantum algorithm witk gates can be dis-
tributed overn computers with a communication cost@fk/m).

5 Quantum Algorithms for Leader Election

5.1 Leader Election with Pre-shared Entanglement

In the leader election problem, each processor in a netwanticgpates in a computation that chooses one
of the participating parties as the leader. It does not mattéch party is chosen, as long as there is exactly
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one leader at the end, and all processors agree on the cAdiegorotocols with pre-shared entanglement
circumvent the classical impossibility of leader electwithout communication by using entanglement
instead of communication.

Pal et al. in [25] discuss the problem of leader election endbntext of thd OCC-ENTANGLENnodel.

Pal et al. assumkgn n-partite pre-shared GHZ states, such that each ohitheocessors holds exactly
one qubit from each of thivg n entangled states. Consequently, each processor hgjasqubits, and
the protocol consists of a single step — measure the locatsquids a result, each processor holds a
binary number that constitutes the address of the electetkie In other words, each individual qubit of a
processor is initially entangled in anpartite GHZ state with the — 1 corresponding qubits at the other
n — 1 processors. Because of the form of the initial entanglejrigrantum mechanics guarantees that the
resulting binary number after measuring is the same at atgmsors, which is what is required for the
protocol to be correct. Since the final outcome is determimethe party that is the quickest to measure its
gubits, this scheme works in the asynchronous setting.

The measurements can be done asynchronously because wehiphecessor happens to measure its
gubits first, the local measurement outcome instantangaetbrmines the measurement outcomes of the
rest of the processors. This guarantees termination angiemess — the leader is elected withcommu-
nication at the cost of consuminpg n n-partite GHZ states and performidge n measurements at each
party. Additionally, since all measurement outcomes arapietely random with no bias, all processors
have equal chances. Thus, fairness is preserved as well.

This scheme would offer an extremely efficient way of solvihg leader election problem. However,
just as we noted in Section 4, the assumption of pre-shatadgement is not a trivial one. Pal et al. point
to [29], where they described a possible protocol to crdaepte-sharea-partite GHZ states. According
to the protocol, the creation of a single share@artite GHZ state requires — 1 EPR pairs of the form,
(J00) + |11))/v/2 (the same as a 2-partite GHZ state). Additionally, the EPRspzeed to be a-priori
distributed along the network in a specific way. If we intetpeach EPR pair as supplying an “invisible”
link between two processors, then the collection of thedlisipplied by the: — 1 EPR pairs should form
a spanning tree of the network. After that, Pal et al.'s prot@ugments the entanglement provided by the
n — 1 EPR pairs to am-partite GHZ state by using jukOCCat the cost ofD(n) communicated bits.

It is not clear whether the constructionlog n n-partite GHZ states requiré¥(n log n) communicated
bits, given that a single-partite GHZ state cost9(n) bits of communication. Pal et al. do not raise this
guestion, but in a way similar to the construction of the fual swap gate that we discussed in Section 4, it
may be possible to achieve some non-trivial savings when n-partite GHZ states are being constructed
concurrently. This is an interesting question to be adékss future research. Even so, we are left with
another assumption — the presence.ef 1 EPR pairs that form a spanning tree of the network. To the best
of our knowledge there is no procedure to create the need8dpals if we have the restriction &OCC
[2, 3]. On the other hand, if there is a quantum channel at hiarsdpossible either to locally create an EPR
pair (e.g. parametric down-conversion in photonic set@@s 11, 34, 26]) and send one of the patrticles to a
remote party or to entangle two spatially separated pastioly making them interact with a third mediating
particle [5, 22]. In short, the complexity of Pal et al.’s fmeol isO(n log n) total classical communication
in O(n) rounds andD(nlogn) quantum communication if the initiat — 1 EPR pairs are created over
guantum channels.

5.2 Anonymous Leader Election with Pre-shared Entanglemen

Other research has focused on leader election in.MEC-ENTANGLE-ANOModel. Classically, the
problem of anonymous leader election is known to be uns@@viabcause of the impossibility to simulta-
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neously guarantee uniqueness and termination [21]. Haywieappears that quantum mechanics can come
to the rescue here. D’Hondt and Panangaden [7] prove thatuwumaentanglement is a necessary and suf-
ficient resource for arriving at a correct solution, i.e.edhat satisfies both uniqueness and termination.
The specific kind of entanglement that is needed is-guartite W state (see Section 2.3). Notice that each
component of the superposition that makes up the W statextaatlyeone qubit agl) and the rest of the
qubits arel0). When the W state is destroyed after measuring all qubigsrehbulting joint state is exactly
one of the components of that superposition. If the W-stateitially prepared, so that each of thequbits
resides on a distinct processor, then after each processasures its qubit, the one that gets 1 as a result
becomes the leader. The W entanglement guarantees thaililie of the rest of the processors are zero.
Regardless of the specific moment when each processor daeeasurement, as soon as one of them gets 1
as a measurement result, the superposition instantagemlklpses to the component where the qubit that
is held by the lucky processor [i5) and the rest arf).

Here again one faces the assumption that the entanglemets @ be taken care of before one starts
solving the leader election problem. Even worse, each timelection is done, the entanglement is de-
stroyed, so whatever efficient procedure there is to prejpaiteat procedure must allow repeated usage in
order to recreate/refresh the initial entangled condibbthe network. There are no indications that the
distributedn-partite W state is any easier to prepare than the corregmpi@&HZ state, so the research in
this direction ends with the same problem as the previoushgidered cases — a practical implementation
of this scheme needs to first have a way of preparing:thartite W state. D’'Hondt briefly considers this
issue in [6]. She finds a quantum circuit to generate the 8t@aW state but finds it difficult to generalize
to then-partite case. She points to [23], where the experimentgipk group of Mikami et al. offers a way
to directly construch-partite W states via a photonic setup.

5.3 Anonymous Leader Election Without Pre-shared Entanglment

Tani et al. in[31, 30, 32] assume tRECOMM-ANONmModel. They show that the general anonymous leader
election problem has a correct quantum solution that carchiexed with certainty in polynomial time and
communication without assuming any prior entanglemenitnibBhting the dubious entanglement assump-
tion that had to be made in Section 5.2 while still circumusnthe classical impossibility for anonymous
leader election is a very significant result. Tani et al. pneseveral algorithms, whose common approach
to solving the problem consists of gradual symmetry bragakin using quantum amplitude amplification,
which is significantly different from the instant solutiof [0’Hondt and Panangaden. However, because
no prior entanglement is assumed, these algorithms usduwmarhannels to create a numbengepartite
shared entangled states that can be used to gradually breayrmmetry in the network until a leader is
chosen.

5.3.1 Tani et al.'s Algorithm

The complexities of the algorithm of Tani et al. [31, 30] that describe here a@(n?) time andO(n*)
quantum and classical communication. Withinitially eligible parties, the algorithm proceeds in—

1 phases in each of which zero or more but not all parties bedoeimgible for election. We usé to
denote the current number of eligible parties. Consequethtloughout the execution of a single phake,
decreases or stays the same but never increases or becaomeEaeh partyi fori = 0,...,n — 1 has a
number of quantum registers, initially in the stéte: R0;, R1;, S;, X0;, X1,, ..., Xd;, whered; is the
number of neighbors af Note that the network is anonymous and the identifisrused only for notation
purposes here. Also, each paithias classical registefs z;, andz,.... Registerk is initialized ton and
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is decremented by 1 after a phase is completed. An imporgatiant to be clarified later is that> [ for
all phases. Registers and z,,... hold 2-bit numbers that are initialized to 0. The algorithsxdivided in
subroutines A, B, and C. The three subroutines, togethérseine local computations, form a single phase.
The execution starts by changing the statein to (|0) + |1))/+/2 for all eligible parties and leaving
it as initialized for all ineligible parties. Then Subrauwdi A is executed. This subroutine either creates a
GHZ state over all eligible parties (“consistent state"aatate that guarantees the elimination of some of the
eligible parties (“inconsistent state”). Consistent amzbnsistent states are formally defined in [31, 30]. For
the purposes of the algorithm, a consistent state, whenureshsresults in identical measurement results
for all of the involved parties. On the other hand, with anoimgistent state, some parties have different
measurement results from others. At the beginning of theostibe, each party locally entangles in a
GHZ state (as shown in Section 2.3) the qubit fr&y with the qubits inX0;, ..., Xd;. Theni exchanges
the contents oX1,, ..., Xd; with its neighbors. Because all of the qubits in a GHZ stageemuivalent to
one another, it does not matter the qubit from which ofXheegisters is sent to which neighbor. Therefore,
each partyi is assumed to have chosen a random one-to-one mapping totsngp;i ..., Xd; registers
to its ports before the algorithm begins. Then, the neigldbmhange is executed by sending each qubit
from X1,,...,Xd; along the appropriate mapped port and placing the qubitishedceived along that
port in the appropriate register according to the mappirgjragAfter the neighbor exchange, a simple
local computation is done on thE0;, ..., Xd; registers in order to determine consistency/inconsigtenc
of the components of the state that is formed by them, andtergiX 0, and.S; are set to the outcome
of this computation. It is assumed tha} in registerS; means “consistent” and) means “inconsistent”.
Afterwards, by usingX0; instead ofR0O; as the entangling register, Subroutine A repeats the destri
local entanglement, neighbor exchange, and local compntat— 1 times in order for each to obtain
the consistency/inconsistency information about the aorepts of the global state. The outcome of the
execution of Subroutine A is an entangled state consistiradj cegistersS; and R0;:

) =10 .. Sp-1)|R00 ... ROp-1) = > [S0, . Sy, ) () + |2))/ V2 H1, (3)

z€{0,1}"

wherez represents the complement of thebit bit-string z. Each of the2™ components of the global
state defined by th&0, registers for alli is a superposition of a distinct bit-string of lengthand its
complement. With each such component is associated a tamsiénconsistency indication provided by
the S; registers. In each component of the superposition in¢hestate above (fixed), the values ofS;

are either all “consistent” or all “inconsistent” for all This determines the consistency/inconsistency of
the associated component of the global state defined bjR@heegisters. For example, if = 2 and both
parties are initially eligible, an execution of SubroutiAeyields the state:|y)) = |Sp, S1)|R0g, R01) =
(/00)(|00) + 1)) + [11)(01) + [10)) + [11)(|10) + [01)) + [00)(|11) + [00))) /22 .

The time complexity of Subroutine A i©(n?), because there arerounds of communication — the
neighbor exchanges done-1 times. Each round tak&3(n) time, because Tani et al. assume that a message
can only be sent to one neighbor at a time, and each party eaJ{a) neighbors. When the subroutine is
executed im— 1 phases, the total time taken by it becori¥s?). The quantum communication complexity
of Subroutine A isO(n?), because each of the parties does: — 1 neighbor exchanges @#(n) qubits,
again because each party can héxe ) neighbors. Execution in — 1 phases makes the total quantum
communicatiorO(n?).

After Subroutine A is executed, each paitgneasures it$; register. This collapses the superposition
in the |¢)) state above to one of its components. If the measuremenbroetés “consistent”, then the
resulting global state defined by all0;'s has collapsed to a consistent state; otherwise, the gttt
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is inconsistent. If the eligible parties find out in this wanat they share a consistent state, they execute
Subroutine B, which attempts to transform that state to amgsition of inconsistent states. Subroutine B
does not always succeed, as will be explained below, butasagieed to have made possible the elimination
of n — 1 eligible parties by the end of the last phase. For technazdans that we do not elaborate here, the
transformation from a consistent to an inconsistent stsaéehieved by using an auxiliary quigitl; at each
processotfi, so that each processor has two qubits in two quantum regjigte; and R1;. The purpose of
Subroutine B is to transform the state consistingiajubits (two qubits at each of tliesligible parties) to a
state that has zero amplitudes for the superposition coemsithat represent the possibilitieg B6);, R1;)
simultaneously giving the same measurement results far @libserve thatR0;, R1;) can be|00), |01),
|10), or |11) for anyi. Therefore, in terms of the tensor product notation that eefsed in Section 2.1,
the components that need to be with zero amplitudes arelgxa@r=*, |01)®*, |10)®*, and|11)®*. These
are the components that can cause identical measuremalis egerywhere. If they are not all with zero
amplitudes, there is a non-zero probability that after tagletion of a phase, no eligible party is excluded
from the race.

To do its transformation, Subroutine B applies one of twosfide gates — and V' in Fig. 7 —
depending on whether the parametes n — i in the i-th phase is odd or even. The reasons for using two
different gates for odd and even phases as well as the defigitif these gates are entirely technical and are
omitted from our discussion. THé andV gates are non-standard and are specified in [31, 30]. Thelyecan
derived from the more general concept of quantum amplitudglification that was introduced in Section
2.4. Subroutine B is essentially an implementation of tkeabhique in the sense that it obliterates the
amplitudes of the undesirable components of the globat stat the consistent components, and amplifies
the amplitudes of the desirable ones, i.e. the inconsistemiponents. The circuits that simulate the cases
k = 3 andk = 2 are shown in Fig. 7. Point ‘a’ of the circuit fér = 3 is the entry point of Subroutine B.
Before that the 3-partite GHZ state consisting of the quibit80; for i = 1, 2, 3 is established, i.e. the three
parties are sharing a consistent state. Between pointacita, CNOT gates are applied dr0; andR1; at
each of the three parties. As a result, at point ‘b’, the dlstete is(|000000) + |111111))/+/2. After that,
each party applies thg& gate on its qubits, which obliterates the amplitudes of tteblematic consistent
components, and the state is transformed into a large sogitom of inconsistent states. The resulting
superposition is too large to be given here, but the intedestader can easily implement the simulation
using the first circuit from Fig. 7. The simulation softwahatwe used can be obtained from [10]. For the
casek = 2, point ‘a’ shows again the joint state at the subroutineyerftd000) + [1010))/+/2. Now each
party applies thé/ gate and as a result, the consistent components are suggprdd®e resulting state is a
superposition of inconsistent stat¢é&0g, R1g, R0;, R1;) = —i(|0010)+|1000))/+/2. It can be easily seen
that both of the components of this state are inconsistentwhenR0y, R1y, R01, andR1; are measured,
the two parties are guaranteed to get different results.

A significant drawback of Subroutine B is that the U and V garesparameterized ovérwhich is used
as an upper bound for the number of eligible partiesSubroutine B successfully transforms a consistent
state into an inconsistent superposition only wkea [. However, this algorithm does not operate with the
exact value of, because a significant amount of additional work would beired in order for each party to
know the value of for each phase. That work is circumvented here by just usiagipper bouné, which
gets gradually tightened in subsequent phases until itiitsctual value of. At that point, Subroutine B
is guaranteed to work, which makes it possible to decrebgat leastl and no more thah— 1. In the next
phasesf continues to be an upper bound fcaind the process of gradual tightening continues ént [
again. At the conclusion of — 1 phases, there is exactly one eligible party, which is theteteleader.

The elimination of eligible parties is attempted by SubimaitC, which succeeds whenever the global
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Figure 8: Quantum circuit simulations for the caseg ef 3 andk = 2 eligible parties.

state after Subroutine A has been collapsed to an inconsitge, or whenever Subroutine B has succeeded
in transforming a consistent state to an inconsistent oeéorB Subroutine C, each of the eligible parties
measures it20; and R1; to form a 2-bit number;. Only the parties with the highest resultingremain
eligible for the next phase. The elimination of the rest @& parties is done by having all eligible parties
execute Subroutine C, which is just a simple classical caation of the maximuny, .., = mazo<i<n(2;)
over the entire network. After Subroutine C is done, if paftyz; is equal t0z,,4., ¢ remains eligible;
otherwise, it makes itself ineligible. Suppose that betbeemeasurements &0; and R1; for all eligible i,
the global state formed by them was inconsistent. Then tlesurements yield at least two distingvalues
around the network, which forces some eligible parties toh® ineligible after executing Subroutine C.
However, in the case of a consistent state, all eligible ggsorsi measure the samg values and nobody
can be excluded after Subroutine C, because everybedggualsz,,q. .

The time complexity of Subroutine C {3(n?) because;,.... is computed im — 1 rounds, each of which
takesO(n) steps, because a message can be sent to only one neighbamatamtl each party can have
O(n) neighbors. When this is done in— 1 phases, the total time taken by this subroutine becab{es).
The classical communication complexity of Subroutine O{&?) because each of theparties does — 1
neighbor exchanges 6¥(n) bits, again because each party can haye) neighbors. When this is done in
n — 1 phases, the total classical communication complexity agde O(n?).

It should be noted that it is not clear whether flieand V' gates can be implemented with a constant
number of gates from the universal set. Moreover, the magpxesentations of thg and” gates contain
irrational numbers, which makes it unclear whether theylmaimplemented exactly at all. Hence, when
they are applied only with finite precision, the amplitudéghe consistent components are greatly sup-
pressed by Subroutine B whén= [ but are still non-zero. For example, in the simulations thatdid for
the casék = 3, the amplitude for the staté00000) is —2.7734-10 + 2.481371%; when the gate is applied
with the precision of 9 significant figures. Apparently, soadlitional work is needed to eliminate such
residues, because otherwise the correctness of the prbalogeithm is not guaranteed in practice. Further,
Tani et al.’s algorithm has no tolerance for failures, beea8ubroutine B requires all eligible parties to
execute it correctly in order for symmetry breaking to worithvweertainty. Another practical consideration
concerns the complexities of Tani et al.’s algorithms — they not competitive with the existing classical
algorithms. Even though the classical algorithms in thiSregare not guaranteed to be always correct, they
are capable of electing a leader with high probabilities emath smaller time and communication costs.
Tani et al. do not investigate the optimality of their algloms, which leaves an open possibility for more
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efficient quantum algorithms.

5.3.2 Other Algorithms

The above algorithm is referred to as Algorithm | in Tani esariginal work. They also have Algorithm

I [31, 30], which has the cost @ (n?logn) quantum communication ar@(n° log? n) time and classical
communication. The advantage over Algorithm | is that thamjum communication is lower, because
the number of phases Isgn instead ofn. However, that is achieved at the price of much higher time
and classical communication costs. Tani et al. in [32] giwve tnore algorithms for solving anonymous
leader election. The first has the same complexities as #god but explicitly uses the technique of exact
guantum amplitude amplification that was introduced ini®a@.4. The second is for the special case when
n is a power of 2. It has only a linear number of rounds, but igswrack is that it ha®(nf log n) quantum
communication.

6 Open Problems

Notably, quantum computing promises significant advargager classical computing in some cases. Nev-
ertheless, there are still important issues that have rest Addressed fully in the research that we reviewed.
Undoubtedly, the whole area of quantum computing can begefdtly from new work that investigates
them:

e Pre-shared multi-partite GHZ and W entanglement: Theseapgs assumed resources everywhere
throughout Section 4, Section 5.1, and Section 5.2. To teedf@ur knowledge, there is no research
work that gives a complete answer regarding the way in whicih ssssumptions can be satisfied in a
practical setting. The question whether this can be dongesffly must be answered if the distributed
guantum computing schemes are ever to become practicelalfo possible that the cost of preparing
multi-partite shared entanglement outweighs the advangagen by it. Preparation of the-partite
GHZ state seems to be easier than the corresponding W stated, with the presence of quantum
communication links between all processors in the netwibik,feasible to create the GHZ state by
locally entangling and exchanging qubits. Locally entadgbairs can be produced on-demand by the
parametric down-conversion techniques that were merdiam&ection 1. More experimental work
on creating entanglement and manipulating it would be meig beneficial.

e Resource savings in non-local circuits similar to the swate gase: As discussed in Section 4, com-
plex circuits that use large numbers of non-local gates neaahibe to do better than use one entangle-
ment pair and two bits of classical communication per naalgate.

e Generatingog n n-partite GHZ states: The version of leader election that eissussed in Section
5.1 is solved when there ateg n n-partite pre-shared GHZ states. Similarly to the poss$jbthat
was noted in Section 5.1, the cost per state of preparingpghe states together could be lower than
the cost of preparing a single such state by itself. In paeic [29] describes how to prepare a single
n-partite GHZ state withO(n) communication cost. Is it possible to prep&sg n such states at a
cost lower tharO(n log n)?

e Fault-tolerant leader election: The algorithms with pnaered entanglement do not work in the pres-
ence of faults, because even if a unique leader is agreed thmrieader may be faulty. The algo-
rithm by Tani et al. that was discussed in Section 5.3 also@zaolerate faults, because the essential
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symmetry breaking via quantum amplitude amplification it®utine B works only if all eligible
parties execute it correctly. The importance of faulttaiee in practice motivates the search for
fault-tolerant quantum leader election.

e Other applications: It would be beneficial to see how thewdised methods and results can be applied
to versions of the leader election problem in settings othan the ones that have been considered
thus far. Also, it is quite likely that other important disuited problems can benefit in similar ways.

7  Summary

We have reviewed the present research regarding the tweataspevhich quantum computing can benefit
from and contribute to distributed computing. First, sitivere is a perceived practical difficulty of scaling
up existing quantum computing implementations, it couldpbssible to solve large problems by using
a number of small quantum computers together. Second, tangaproblems from classical distributed
computing such as leader election can potentially benefih fusing quantum resources. We presented
trivial protocols that solve leader election with no comneation but with the assumption that previously
shared entanglement is in place. We also considered thgmoms leader election problem, where the best
classical algorithms elect a unique leader in finite timehhiigh probability, but the quantum algorithms
solve the problem with certainty. Even though the resedrahwe have reviewed has offered impressive
solutions, it has done so with the non-trivial assumptiotihefability to create and maintain shared entangled
states. Not only does this assumption remain to be showsfiahte, but also the additional cost incurred
by satisfying it remains to be evaluated in order to see vwdreithdoes not outweigh the advantages of
quantum processing. The only work that does not assume a@ygmtanglement is the work of Tani et al.
that was discussed in Section 5.3. However, their algosthave serious practical drawbacks as well. It
is currently unknown whether the essential unitary tramsédions from Subroutine B that circumvent the
classical impossibility result can be implemented exaatig how much overhead their implementations
would incur. Also, the correct solution of the anonymousd&aelection problem that is achieved with
certainty by the quantum algorithm comes at the price of drighme and communication complexities,
when compared with the classical randomized algorithms dbhieve a correct solution only with high
probability.
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