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After two columns on practical problems arising in current day technologies (multicores in Column
29; systems research in Column 30), this column takes a sharpturn towards the futuristic realm of quantum
computations. More specifically, the column features two surveys ofdistributed quantum computing, which,
unbeknownst to many distributed computing folks, is an active area of research.

First, Anne Broadbent and Alain Tapp provide a broad overview of distributed computations and multi-
party protocols that can benefit from quantum mechanics, most notably fromentanglement. Some of these
are unsolvable with classical computing, for example, pseudo-telepathy. In other cases, like appointment
scheduling, the problem’s communication complexity can bereduced by quantum means.

Next, Vasil Denchev and Gopal Pandurangan critically examine the joint future of quantum computers
and distributed computing, asking whether this is a new frontier . . . or science fiction. They give background
to the lay reader on quantum mechanics concepts that provideadded value over classical computing, (again,
entanglement figures prominently). They also elaborate on the practical difficulties of implementing them.
They then illustrate how these concepts can be exploited fortwo goals: (1) to distribute centralized quantum
algorithms over multiple small quantum computers; and (2) to solve leader election in various distributed
computing models. They conclude that the jury is still out onthe cost-effectiveness of quantum distributed
computing.

Both surveys outline open questions and directions for future research. Many thanks to Anne, Alain,
Vasil and Gopal for their contributions!

Call for contributions: I welcome suggestions for material to include in this column, including news,
reviews, open problems, tutorials and surveys, either exposing the community to new and interesting topics,
or providing new insight on well-studied topics by organizing them in new ways.
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Abstract

We present a brief survey of results where quantum information processing is useful to solve dis-
tributed computation tasks. We describe problems that are impossible to solve using classical resources
but that become feasible with the help of quantum mechanics.We also give examples where the use of
quantum information significantly reduces the need for communication. The main focus of the survey is
on communication complexity but we also address other distributed tasks.
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Quantum computation and entanglement

This survey is aimed at researchers in the field of theoretical computer science having only very limited
knowledge of quantum computation. We address the topics of communication complexity and pseudo-
telepathy, as well as other problems of interest in the field of distributed computation. The goal of this
survey is not to be exhaustive but rather to cover many different aspects and give the highlights and intuition
into the power of distributed quantum computation. Other relevant surveys are available [49, 14, 20, 16].

In classical computation, the basic unit of information is the bit. In quantum computation, which is based
on quantum mechanics, the basic unit of information is thequbit. A string of bits can be described by a string
of zeroes and ones; quantum information can also be in a classical state represented by a binary string, but in
general it can be insuperpositionof all possible strings with differentamplitudes. Amplitudes are complex
numbers and thus the complete description of a string ofn qubits requires2n complex numbers. The fact
that quantum information uses a continuous notation does not mean that qubits are somewhat equivalent to
analog information: although the description of a quantum state is continuous, quantum measurement, the
method of extracting classical information from a quantum state, is discrete. Onlyn bits of information can
be extracted from ann-qubit state. Depending of the choice of measurement, different properties of the state
can be extracted but the rest is lost for ever. Another way to see this is that measurement disturbs a quantum
state irreversibly. In quantum algorithms, it is possible to compute a function on all inputs at the same time
by only one use of a quantum circuit. The difficult part is to perform the appropriate measurement to extract
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useful information about the function. We refer the reader to [44, 41, 33] for introductory textbooks to
quantum information processing.

One of the most mysterious manifestations of quantum information isentanglement, according to which
distant parties can share correlations that go beyond what is feasible with classical information alone:quan-
tum correlations! Entanglement is strange, useful and not completely understood. Some of the results
described in this survey will shed light on this facet of quantum mechanics. In the absence of quantum
correlations (if two players do not share entanglement), itis necessary to transmitn qubits to conveyn bits
of information [32]. When the players share quantum correlations, this can be improved to2n but not
more [25]. One would therefore think that quantum mechanicscannot reduce the amount of communication
required in distributed tasks (by more than a constant). Surprisingly, this intuition is wrong!

We are beginning to get the idea that classical information and quantum information are quite different.
As further evidence, note that classical information can trivially be copied, but quantum information is
disturbed by observation and therefore cannot be faithfully copied in general. Note that the fact that quantum
information cannot be copied does not imply that it cannot beteleported [12].

Quantum key distribution (QKD) [11] is one of the founding results of quantum information process-
ing. This amazing breakthrough is an amplification protocolfor private shared keys. Another result that
propelled quantum computation into the attractive area of research that it is today is Peter Shor’s factoring
algorithm [48], which is a polynomial-time algorithm to factor integers on a quantum computer. Note that
the best known classical algorithm, the number field sieve, [36, 35] takes time inO(2cn1/3(log n)2/3

) where
n is the number of bits of the number to be factored. The importance of this result is evidenced by the fact
that the security of most sensitive transactions on the Internet is based on the assumption that factoring is
difficult [47].

Since quantum information cannot, even in theory, be copied, and since it is very fragile in its physical
implementations, it was initially believed by some that errors would be an unsurmountable barrier to building
a quantum computer. Actually, this was the first and only serious theoretical threat to quantum computers.
Fortunately, quantum error correction and fault tolerant computation were shown to be possible with realistic
assumptions if the rate of errors is not too big. This impliesthat a noisy quantum computer can perform an
arbitrary long quantum computation efficiently as soon as some threshold of gate quality is attained [4]. We
will not discuss quantum computer implementations but let us mention that experiments are only in their
infancy. Quantum communication is the most successful present-day implementation, with QKD being
implemented by dozens of research groups and being commercially available [1].

We now begin a survey of the main results in distributed computation. We will not give the quantum
algorithms or protocols that solve the presented problems;they are usually quite simple. Most of the time,
the difficulty is to provide a proof of their correctness or toshow that a classical computer cannot be as
efficient.

Pseudo-telepathy

The termpseudo-telepathyoriginates from the authors of [17] (although it does not appear in the paper).
It involves the study of a physical phenomenon that was previously studied by physicists [30, 40]. We
introduce this strange behaviour of quantum mechanics witha story.

Alice and Bob claim that they have mysterious powers that enable them to perform telepathy. However
surprising that this may seem, they are willing to prove their claim to a pair of physicists that do not know
about quantum mechanics. Imagine that they are willing to bet a substantial amount of money. To be more
precise, Alice and Bob do not claim that they can send emails by thought alone, but they claim that they
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can win the following game with certainty without talking toeach other. As you will see, their claim is very
surprising because it appears that it is impossible to satisfy!

A magic square (see Figure 1) is a 3 by 3 matrix of binary digitssuch that the sum of each row is even
and the sum of each column is odd. A simple parity argument is sufficient to convince oneself that a magic
square cannot exist: since the sum of each row is even, the sumof the whole square has to be even. But
since the sum of each column is odd, the sum of the whole squarehas to be odd. This is a contradiction and
therefore such a square cannot exist.

0 1 1
1 1 0
0 1 ?

Figure 1: A partial magic square. In a magic square, the sum ofeach row is even and the sum of each
column is odd.

In the game that Alice and Bob agree to play, they will behave exactly as if they actually agreed on a
collection of such squares (at least, in a context where theycannot talk to each other). The physicists will
prevent Alice and Bob from communicating during the game; aneasysolution is to place Alice and Bob
several light years away. According to relativity, any message they would exchange would take several years
to arrive.

To test the purported telepathic abilities, each physicistis paired with a participant. They then ask
simultaneously questions: Alice is asked a give a row of the square (either row 1, 2 or 3) and Bob is asked to
give a column (either column 1, 2 or 3). Each time the experiment is performed, Alice and Bob claim to used
a different magic square. After a certain number of repetitions, the physicists get together and verify that
the sum of each row is even and the sum of each column is odd, andmoreover that the bit at the intersection
of the row and column is the same. It is not so difficult to see that if Alice and Bob do not communicate
after the onset of the game, there is no strategy that wins this game with probability more than8/9. This
is the outcome that the pair of physicists would expect. Instead, they are astounded to see that Alice and
Bob always win, no matter how many times they repeat the game!Alice and Bob have managed to win
their bet and accomplish a task that provably requires communication, but without communicating! Hence
the namepseudo-telepathy. How is this possible? Thanks to quantum mechanics, Alice and Bob can win
with probability 1. In addition to agreeing on a strategy before the experiment, Alice and Bob share enough
entangled particles. If you think winning such a game is amazing, then now you understand a bit more why
we consider entanglement to be such a wonderful and strange resource. This simple thought experiment has
very important consequences on our understanding of the world in which we live, both in the physical and
philosophical perspectives [27, 9, 22].

More formally, a pseudo-telepathy game is a distributedk-player game where the players can agree on
a strategy and can share entanglement. While the players arenot allowed to communicate, each player is
asked a question and should provide an answer. The game must be such that quantum players can win with
probability 1 but classical players cannot. The example we presented comes from [7]. We refer the reader
to a survey specifically on this subject [16].
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Communication complexity

Communication complexity is the study of the amount of communication required to compute functions on
distributed data in a context of honest cooperating players. It was first introduced by Harold Abelson [3] and
given in its current form by Andrew Yao [52]. A good referenceon classicalcommunication complexity is
[34]. There are several variations of the basic model; here,we concentrate on the most natural one. LetF
be ak-input binary function. We are in a context where thek players each have one of the inputs to the
function. Theprobabilistic communication complexity is the amount of bits that have to be broadcast by
the players in order for player number one to be able to compute F with probability at least2/3 (in the
worst case). We assume that the players share some random bits and that they cooperate. The value2/3 is
arbitrary and can be very efficiently improved by parallel repetition. Note that in this model, we do not care
about the computational complexity for every player, but ingeneral the computation required by the players
is polynomial. The trivial solution that works for all functions is for each player (except the first one) to
broadcast his input. We will see that sometimes, but not always, the players can do much better.

Let us illustrate the concept with a simple example. Supposewe have two players, Alice and Bob, who
each have a huge electronic file and they want to test if these are identical. More formally, they want to
compute the equality function. If one insists that the probability of success be 1, then Bob has to transmit
his entire file to Alice: any solution would require an amountof communication equal to Bob’s file size.
Obviously, if we are willing to tolerate some errors, there is a more efficient solution. Letx be Alice’s input
andy be Bob’s, and assume Alice and Bob sharez, a random string of the same length asx andy. If x = y,
obviouslyx ·z = y ·z but it is not too hard to see that ifx 6= y, the probability thatx ·z = y ·z is exactly1/2
(here,x · z is taken to be thebinary inner product: the inner product ofx andz, modulo 2). In order for
Alice to learn this probabilistic information, Bob only hasto send one bit. By executing this twice, we have
that the function can be computed correctly with probability 3/4.

One might argue that we are cheating by allowing Alice and Bobto share random bits and not counting
this in the communication cost. We have decided to concentrate on this model since it is natural to compare
it to the quantum case. Also, in general, if Alice and Bob do not share randomness, they can obtain the same
result only with an additionallog n bits of communication [43].

Yao is also responsible for pioneering work in the area ofquantumcommunication complexity [53], in
which he asked the question: what if the players are allowed to communicate qubits (quantum information)
instead of classical bits. No answer to this question was initially advanced. In [23], Richard Cleve and Harry
Buhrman introduced a variation on the model, for which they showed a separation between the classical and
quantum models: the players communicate classically but they share entanglement instead of classical ran-
dom strings. This time, the goal is to compute the function with certainty. They exhibited a function (more
specifically, arelation, also called apromise problem) for three players such that in the broadcast model,
any protocol that computes the function requires 3 bits of communication. In contrast, if the players share
entanglement, it can be computed exactly with only 2 bits of classical communication. The function they
studied is not very interesting by itself but the result is revolutionary: we knew that entanglement cannot re-
place communication, and what this result shows is that entanglement can be used to reduce communication
in a context of communication complexity.

Harry Buhrman, Wim van Dam, Peter Høyer and Alain Tapp [21] improved the above result by ex-
hibiting ak-player function (again with a promise) such that the communication required for computation
with probability 1 is inΘ(k log k), but if the players share quantum entanglement, it is inΘ(k). They also
showed that it is possible to substitute the quantum entanglement for quantum communication, resulting in a
protocol still withO(k) communication. This was the first non-constant gap between quantum and classical
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communication complexity. Once more, the function that wasstudied is not natural.
Quantum teleportation [12], shows that two classical bits of communication, coupled with entanglement,

enable the transfer of a qubit. Applying this, we get that anytwo-player protocol using quantum communi-
cation can be simulated by a protocol using entanglement andclassical communication, at the cost of only
doubling the communication.

The first problem of practical interest where quantum information was shown to be very useful is the
appointment scheduling problem. For this problem, Alice has an appointment calendar that, for each day,
indicates whether or not she is free for lunch. Bob also has his own calendar, indicating whether or not he is
free. The players wish to know if there is a day where they are both free for a lunch meeting. In the classical
model, the amount of communication required to solve the problem is inΘ(n). In the quantum model, this
was reduced toO(

√
n log n) in [19], and further improved toO(

√
n) in [2].

The first exponential separation between classical and quantum communication complexity was pre-
sented in [19] but it was in the case where the function must becomputed exactly. Later, Ran Raz gave an
exponential separation in the more natural probabilistic model that we have presented, but for a contrived
problem [46]. See also related work [28]. Note that not all functions can be computed more efficiently using
quantum communication or entanglement; this is the case of the binary inner product [25].

Other communication games

Fingerprinting

This interesting result was introduced in the context of communication complexity but is of general inter-
est. It was shown in [18] that to any bitstring or message, a unique and very short (logarithmic) quantum
fingerprint can be associated. Although the fingerprint is very small and generated deterministically, when
two such fingerprints are compared, it is possible to determine with high probability if they are equal. The
concepts of quantum fingerprinting were used in the context of quantum digital signatures [29].

Coin tossing

Moving to a more cryptographic context, one of the simplest and most useful primitives is the ability to
flip coins fairly in an adversarial scenario.Strong coin tossingencompasses the intuitive features of such a
protocol: it allowsk players to generate a random bit with no bias (or an exponentially small one), where
bias is the notion of a player being able to choose the outcome. Thetrivial method of allowing a single
player to flip a coin and announce the result is biased: the player could choose the outcome to his advantage.

It is possible to base the fairness of a coin toss on computational assumptions: this is due to the fact that
bit commitment can be used to implement coin toss and that bitcommitment itself can be implemented with
computational assumptions [26]. However, we know that whenquantum computers become available, some
of the assumptions on which these protocols are based will unfortunately become insecure. Is there a way to
implement a coin toss using quantum information? It was shown by Andris Ambainis [5] that if two players
can use quantum communication, this task can be approximated to some extent without computational
assumptions. If both Alice and Bob are honest, the coin flip will be fair, otherwise one player can bias the
coin toss by 25% but no more. This is almost tight since it was proven that in this context, the bias cannot be
reduced lower than approximately 21% (this result is due to unpublished work of Alexei Kitaev; see [31] for
a conceptually simple proof). This lower bound discouragedquantum cryptographers but it was misleading.
In a context where the coin toss is used to choose a winner (a very natural application), then we know in
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which direction each player is trying to bias the coin toss. Surprisingly, in this context, quantum protocols
exist that have arbitrarily small bias [42]. See also [13] for a loss-tolerant protocol.

Quantum proofs

An area of theoretical computer science that is very important and related to complexity is the field ofproofs.
The concept of short classical proofs for a statement is captured by the complexity classNP and is the most
natural. We know that many difficult problems actually have short witnesses or proofs. Can we generalize
this concept in a useful and meaningful way to the quantum world? What would be a quantum proof? Would
it be useful?

In a seminal paper by John Watrous [51], a specific problem, group non-membership, was shown to
have short quantum proofs. It is not known (and believed to beimpossible) to come up in general with a
short classical proof that an element is not part of a group when the description of the group is given as a list
of generators. What is amazing is that there exist quantum states that can be associated to such a problem
that are short quantum proofs. More specifically, if the verifier has a quantum computer, there is a quantum
algorithm that will efficiently verify the witness: if the element is in the group, no quantum state will make
the verifier’s algorithm accept with non-negligible probability, whereas if the element is not in the group,
there is a quantum state that will make the algorithm accept with probability 1.

Classical simulation of entanglement

In previous sections, we presented several examples where entanglement can be used to solve distributed
computing problems more efficiently. In physics and computer science, an active area of research is dealing
with the opposite problem, the simulation of entanglement using classical communication. The objective
is to exactly reproduce the distribution of measurement outcomes, as if they were performed on entangled
qubits. The distant players are assumed to share continuousrandom variables; otherwise it is known to
be impossible. The first protocol to simulate a maximally entangled pair of qubits using classical commu-
nication was presented in [39]. The protocol uses an expected 1.74 bits of communication but to be able
to simulate a maximally entangled pair of qubits perfectly,the amount of communication is not bounded.
In [17], a simulation was presented using exactly 8 bits of communication and this was later improved to 1
bit [50].

In general, looking at the classical communication complexity (with shared randomness) for pseudo-
telepathy games tells us how difficult it is to simulate entanglement. Using this idea, it is proved in [17] that
n maximally-entangled qubits require an exponential amountof communication to be simulated perfectly.
Some protocols actually exist that accomplish this almost tightly with an expected amount of communication
for generalmeasurements [38].

Protocols for quantum information

If we choose to deal with tasks involving quantum information instead of classical information, there are a
lot of results and possibilities. Quantum teleportation isthe most famous [12], but all sorts of channels have
been studied for quantum communication. On the cryptography side, we know protocols to encrypt [6] and
authenticate quantum messages [8]. It is possible to perform multi-party computation with quantum inputs
and outputs in a secure way [10]. It is also possible to anonymously transmit quantum messages [15].
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Conclusion

We have given the reader a glimpse of distributed computing in the quantum world. Following the main
lines of our survey, we now present a partial list of open questions.

Characterization of games that exhibit pseudo-telepathy.One way to recognize a pseudo-telepathy game
is to find a perfect quantum strategy and then show that there is no such classical strategy. We would like a
more natural way to recognize such a game, relying more on theunderlying structure of the game.

Quantum parallel repetition.What is the best probability of success for Alice and Bob who are involved
in manyparallel instances of the same game, using entanglement? For purely classical games, the proba-
bility of success decreases at an exponential rate [45] (as surprising as it sounds, the probability does not
decrease at the same rate as one might expect and this result is far from being trivial). This question asks
whether or not there is a similar theorem for the case that theplayers use shared entanglement. A special
case was answered in the affirmative by [24].

Quantum communication complexity: qubits versus entanglement. As mentioned, we know that tele-
portation can be used to transform any two-player protocol using quantum communication into a protocol
using entanglement, at a cost of only two classical bits per qubit in the original protocol. This question asks
whether or not we can do the same thing, up to a constant factor, in theotherdirection. Related work in this
direction includes [37], where it is shown that in a slightlydifferent scenario, there exist tasks for which no
finite amount of entanglement yields an optimal strategy.

Simulation of multi-party entanglement.In contrast to the two-party case, very little is known aboutthe
simulation of multi-party entangled states. In particular, it is not even known if this general task is possible
with bounded communication.
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Abstract

Quantum computing and distributed systems may enter a mutually beneficial partnership in the fu-
ture. On the one hand, it is much easier to build a number of small quantum computers rather than a
single large one. On the other hand, the best results concerning some of the fundamental problems in
distributed computing can potentially be dramatically improved upon by taking advantage of the superior
resources and processing power that quantum mechanics offers. This survey has the purpose to high-
light both of these benefits. We first review the current results regarding the implementation of arbitrary
quantum algorithms on distributed hardware. We then discuss existing proposals for quantum solutions
of leader election — a fundamental problem from distributedcomputing. Quantum mechanics allows
leader election to be solved with no communication, provided that certain pre-shared entanglement is
already in place. Further, an impossibility result from classical distributed computing is circumvented
by the quantum solution of anonymous leader election — a unique leader is elected in finite time with
certainty. Finally, we discuss the viability of these proposals from a practical perspective. Although,
theoretically, distributed quantum computing looks promising, it is still unclear how to build quantum
hardware and how to create and maintain robust large-scale entangled states. Moreover, it is not clear
whether the costs of creating entangled states and working with them are smaller than the costs of exist-
ing classical solutions.

1 Introduction

In recent years, quantum computing has been widely advertised as the next ground-breaking technological
innovation that holds the promise to fundamentally change the way we do computing. Futurists and lay
people, as well as serious researchers from several diversescientific areas, have been fascinated by the
potential advantages that quantum computing shows.

But harnessing the counter-intuitive laws of quantum mechanics has proven to be a hard practical prob-
lem. Today there are just a few successful implementations of small quantum computers. Unfortunately,

1 c©V. S. Denchev, G. Pandurangan, 2008
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scalability is an insurmountable problem for all of them, which is why they are used only for trivial com-
putations to illustrate the potential advantages of quantum algorithms. Consequently, some of the research
that we discuss in this survey is motivated by the possibility to overcome the scalability problems of current
technology. Such a goal can be achieved by using a collectionof small quantum computers to solve prob-
lems in a distributed manner via casting known centralized algorithms into their distributed versions. We
discuss this strategy in Section 4.

Distributed systems can benefit from quantum technology as well, assuming the ability to efficiently
create and reliably use quantum entanglement. The phenomenon of entanglement counter-intuitively inval-
idates the notion oflocal realismby creating non-local relationships between quantum objects and blurring
the physical state until a measurement is done. Consideringtwo entangled particles, the state of each of
them is a superposition of the possible values of some physical property and the joint state cannot be de-
composed into a product of single-particle states. Non-locality is manifested by the fact that a measurement
done on one of the particles not only collapses the superposition of the initial quantum state of the measured
particle to a single definite value, but it also instantaneously collapses the state of the other particle to a cor-
responding definite value, regardless of the spatial separation of the two particles. It is this “spooky action
at a distance” that strongly disturbed Einstein [13] but wasnevertheless confirmed later [1]. Entanglement
is briefly discussed in Section 2.3, but a far more detailed treatment can be found in [24].

The theoretical proposals that we overview in Section 5 offer impressive solutions for leader election —
a fundamental problem that sometimes can be a performance bottleneck, because it has to be routinely solved
in distributed computing. Section 5.1 presents quantum solutions for leader election without communication
but with entanglement that has been shared among the participating processors. There is one main trick
that makes these schemes work: choosing the specific form of entanglement in a way that ensures that
measuring the entangled particles results in a collapsed global state that satisfies the requirements for a
valid solution. Section 5.2 and Section 5.3 consider the anonymous version of leader election and show
how an impossibility result [21] from classical distributed computing is violated in the quantum world —
a unique leader in an anonymous network is elected in finite time with certainty. Classically, anonymous
leader election in networks with arbitrary topology is solved with high probability by randomization [21,
33]. However, in the quantum world, entanglement can be usedto break symmetry even in completely
symmetric networks. Section 5.2 uses the same strategy of pre-shared entanglement as Section 5.1. Section
5.3 presents a more intricate algorithm that does not assumeany pre-shared entanglement but uses quantum
communication to create certain entangled states that do not necessarily guarantee that the leader is chosen
in a single step. Nevertheless, they guarantee that a leaderis chosen with certainty after a finite number of
steps of gradual symmetry-breaking. The main trick here is quantum amplitude amplification [4], which is
also the essential technique that is used in Grover’s searchalgorithm [17]. We briefly introduce quantum
amplitude amplification in Section 2.4.

The quantum solutions of distributed problems are quite impressive, but in practice there are very serious
problems related to the implementation of useful quantum devices. Quantum entanglement appears as a
basic requirement for the functioning of any quantum algorithm that claims any advantages over its classical
counterpart, which motivates the conjecture that entanglement is the fundamental source of all quantum
speedups [18, 19, 20, 15]. It appears that quantum entanglement is a new fundamental resource, the likes of
which have never been known in classical computing. The difficulty here is that a complete understanding
of entanglement has not been achieved yet. Simple cases of ithave been explored by experimental physicists
[23, 11, 34, 26], but nobody has attempted to build the large-scale entangled states that are assumed for the
solutions of leader election. As a consequence, we currently do not know whether the costs of creating,
using, and maintaining entanglement do not outweigh the advantages that it offers. For example, in the
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context of leader election, it might very well be the case that entangling a set of processors is harder than
simply a-priori choosing a leader and equipping each processor with knowledge about the chosen leader. In
the context of anonymous leader election, the additional cost of quantum processing brings up the question
whether it is worth having a quantum algorithm that elects a unique leader in finite time with certainty when
there are more efficient classical algorithms that solve theproblem with high probability. Moreover, the
anonymous leader election algorithm that we present in Section 5.3 suffers from two additional drawbacks:
(i) The crucial underlying technique of quantum amplitude amplification may not be implementable at a
constant cost as the algorithm assumes; (ii) Its physical implementation may not be able to preserve the
theoretically promised certainty of always electing a unique leader in finite time.

We assume that the reader is familiar with the basic conceptsof distributed computing. Comprehensive
discussions on the existing classical algorithms for leader election can be found in [33, 21]. In the next
section we give a basic and by no means complete introductionto the relevant background in quantum
computing. We restrain ourselves just to defining the essential terms and concepts that are crucial for
understanding our subsequent discussion.

2 Quantum Computing Background

2.1 Quantum States

A comprehensive introduction to quantum computing can be found in [24]. The qubit, the quantum version
of the classical bit, is defined in two-dimensional complex vector space. Dirac notation is the accepted
standard notation: two of the possible states for a qubit are|0〉 and|1〉, which are known as the computational
basis states corresponding to the classical logical valuesof 0 and1. Sometimes their vector representations

are used:|0〉 =

(
1
0

)

and|1〉 =

(
0
1

)

. The novelty here is that a qubit can be in many other states as

well—different superpositions of the|0〉 and|1〉 basis states. In fact, there is an infinite number of possible
quantum states, because a general quantum state is of the form |ψ〉 = α|0〉 + β|1〉, whereα, β ∈ C are
the probability amplitudes of the corresponding components of the superposition and they have to obey the
normalization rule:|α|2 + |β|2 = 1. Even though a qubit can be simultaneously storing two logical values,
when a measurement in the|0〉, |1〉 basis is performed on it, the outcome is either one of them butnot both.
After a measurement is performed, and a classical bit is obtained from it, we say that the quantum state has
been collapsed. The role of the probability amplitudes becomes apparent when we collect statistics about
the measurement results for a multitude of identically prepared states. The square of the absolute value of
a probability amplitude predicts the portion of the total number of measurements where the corresponding
component is observed as the resulting collapsed state.

The joint state of multiple qubits is described by the tensorproduct (⊗) of the single-qubit states of
the individual qubits. For two vectorsx andy of dimensionsm andn, x ⊗ y is a vector of dimension
mn. For example,|ψ〉 ⊗ |φ〉, the two-qubit joint state of qubits|ψ〉 and |φ〉, is a vector of dimension 4
because the single-qubit states are vectors of dimension 2.The⊗ symbol can be omitted whenever the
tensor product (multi-qubit state) is obvious, so the notation for this example can also be|ψ, φ〉 or |ψφ〉.
Also, |ψ〉⊗k = |ψ〉 ⊗ |ψ〉 ⊗ . . .⊗ |ψ〉

︸ ︷︷ ︸

k times

denotes ak-qubit state in which all individual qubits are in the state

|ψ〉 simultaneously.
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2.2 Quantum Gates

A quantum gate transforms the state of a quantum system. A single-qubit input state of the general form
α|0〉+β|1〉 is transformed toγ|0〉+δ|1〉, whereγ andδ depend onα, β, and the definition of the transforming
gate. By the laws of quantum mechanics, any such transformation must be unitary, i.e. anyn-qubit quantum
gate must be representable as a2n × 2n matrix U , whereU †U = I andU † is the conjugate transpose of
U . The action of a gate on an input state is described by matrix-vector multiplication:Gx = y, whereG is
some quantum gate,x is the input, andy is the output. Because unitarity is the only restriction on quantum
gates, there is an infinite set of possible quantum gates, butonly a small subset of them are used often and
have become standardized. The standard quantum gates that are used in our subsequent discussion are the
Z (corresponding to the Pauli Z matrix), Hadamard, rotation, controlled-NOT (CNOT), and swap gates. We
refer the reader to [24] for descriptions of the other standard gates.

The Z and Hadamard gates are single-qubit gates:Z =

(
1 0
0 −1

)

andH = 1√
2

(
1 1
1 −1

)

. The

matrix-vector multiplication of the matrix for the Z gate with the vector representations of|0〉 and|1〉 shows
that the Z gate does not change the|0〉 basis state and multiplies by−1 the |1〉 basis state. Similarly,
the Hadamard gate outputs(|0〉 + |1〉)/

√
2 when the input is|0〉 and (|0〉 − |1〉)/

√
2 when the input is

|1〉. Because of the linearity of quantum gates, when the input isnot just one of the basis states but some
superposition of them, the output consists of the superposed action of the gate on the basis states that
compose the input state. For example, the output of the Z gateon the(|0〉+ |1〉)/

√
2 input is(|0〉−|1〉)/

√
2.

A rotation gate performs a phase rotation by an arbitrary angle in the Bloch sphere1. Rotation gates form a
family of quantum gates, which serves as a generalization ofall single-qubit gates.

Figure 2: CNOT and swap gates.

The CNOT gate (Fig. 1a) has two inputs: the|x〉 input is calledcontrol and the|y〉 input is target.
The gate performs addition modulo2 of the control and target qubits, stores the result in the target qubit,
and leaves the control qubit unchanged. In other words, the target is inverted when the control is|1〉 and
is left unchanged when the control is|0〉, while the control always remains unchanged. Again, when the
input is a superposition of the basis states, the output is a superposition of the actions of the gate on the
corresponding basis-state components of the input state. For example, when the input to the CNOT gate
is (|00〉 + |11〉)/

√
2, the output is(|00〉 + |10〉)/

√
2. This is so, because the|00〉 component of the input

superposition is left unchanged by the gate (the control is|0〉) and the|11〉 component is transformed to
|10〉 (the control is|1〉, so the target is inverted). The operation of the swap gate (Fig. 1b) is even more
straightforward: the two inputs are simply exchanged.

Nielsen and Chuang provide in [24] a formal proof that the CNOT and general single-qubit gates form a
universal set for quantum computation, i.e. any quantum algorithm can be expressed as a circuit consisting

1The Bloch sphere is the three-dimensional unit sphere. Any single-qubit quantum state can be represented as a point on the
Bloch sphere, which is why this simple abstraction has traditionally served to describe single-qubit states and arbitrary transforma-
tions on them.
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only of these gates. They also show that there exist unitary transformations that require compositions of
exponential numbers of gates from the universal set. For example, the unitary transformation that solves an
NP-C problem may require exponentially many such gates. However, the goal of quantum computation is
exactly to find interesting transformations that can be performed more efficiently than what is possible in
the classical world.

2.3 Quantum Entanglement

Quantum entanglement involves the joint state of two or morequbits. Informally, we say that when a
collection of qubits is entangled, they are non-locally correlated in the sense that performing a measurement
on one of them instantaneously affects the state of the other(s), even when there are arbitrarily large spatial
separations between individual qubits.

However, there is an immediate concern that the presence of non-local correlations in entangled systems
might be implying the possibility for super-luminal signaling, i.e. being able to communicate faster than
the speed of light. Fortunately, this apparent conflict withAlbert Einstein’s Theory of Relativity [12] has
been settled down by the No-Signaling Theorem [9, 27], whichproves the impossibility to directly use the
instantaneous effects of quantum entanglement to transmituseful information. As it turns out, entanglement
alone cannot be used for communication. On the other hand, inthe case of quantum teleportation [24],
communication of quantum states is achieved with the help ofclassical signaling, which is clearly bounded
by the speed of light.

There are two types of entanglement that we are interested infor the purposes of distributed computing:
GHZ [16, 8] and W [8]. A collection ofn qubits can be entangled in ann-partite GHZ state of the form:

|ψ〉 = (|000 . . . 000〉 + |111 . . . 111〉)/
√

2 (1)

Then-partite W state, on the other hand, looks like this:

|γ〉 = (|00 . . . 01〉 + |00 . . . 10〉 + · · · + |01 . . . 00〉 + |10 . . . 00〉)/
√
n (2)

It is not difficult to see that these two types of entanglementare quite different from each other. They
exhibit different degrees of “persistency”. Notice that all of the qubits in the GHZ state are collapsed to a
definite state (|0〉 or |1〉) by measuring exactly one of them. In contrast, destroying the entanglement of a W
state requires in generaln− 1 qubits to be measured, because for any fixed qubit, it has a single component
that can give a measurement result of 1 andn − 1 components that can give a measurement result of 0.
Hence, if measuring one qubit gives 0, only a single component of the superposition is eliminated (the one
that represented the possibility of measurement result of 1), butn− 1 more components remain superposed.

Fig. 2 shows the circuit that creates a 2-partite GHZ state (also known as a Bell pair or EPR pair). The
initial state of the two qubits is|00〉. The Hadamard gate puts the control qubit in an equal superposition:
(|0〉 + |1〉)/

√
2, so the joint state becomes(|00〉 + |10〉)/

√
2. Now the CNOT gate is applied: the first

component of the superposition does not change, because itscontrol qubit is|0〉, but the target in the second
component becomes|1〉 because the control is|1〉. As a result, the final state is(|00〉 + |11〉)/

√
2. This

entangled state can be augmented with more qubits by making each of them the target of a CNOT gate
controlled by any of the already entangled qubits.

2.4 Quantum Amplitude Amplification

Quantum amplitude amplification appears as the essential technique in Grover’s search algorithm [17]. An
unstructured database is searched for an item that matches the search criteria according to some oracle. If the

ACM SIGACT News 81 September 2008 Vol. 39, No. 3



Figure 3: Locally entangling two qubits.

database is of sizen and there arem items that match the search criteria, the necessary number of steps for
finding one of them items isΩ(n/m) according to the classical lower bound. However, Grover’s algorithm
succeeds with high probability in justO(

√

n/m) steps by using quantum amplitude amplification. The
algorithm starts by preparing a uniform superposition of all items in the database. At this point, if the
quantum state is measured, there is only anm/n chance of obtaining one of the desired items. Grover’s
algorithm does not do that, but instead, it proceeds in a number of successive steps of gradually increasing
the amplitudes of the desired item(s) at the expense of the amplitudes of the rest of the items in the database.
The novelty here is that just

√

n/m such steps are enough to boost the amplitudes of them good items, so
that a measurement in the end yields one of them with high probability.

Grover’s algorithm is just one application of quantum amplitude amplification, which is generalized in
[4]. In general, this technique allows the amplitudes of chosen components from a superposition state to be
amplified at the expense of others, whose amplitudes get attenuated. For example, consider the2-qubit state
consisting of qubits|q0〉 = (|0〉 + |1〉)/

√
2 and|q1〉 = (|0〉 + |1〉)/

√
2: |φ〉 = |q0, q1〉 = (|0〉 + |1〉)(|0〉 +

|1〉)/2 = (|00〉 + |01〉 + |10〉 + |11〉)/2. In this state, all of the four possible components are superposed
with equal amplitudes. However, if the Hadamard gate is applied to |q0〉, the2-qubit state becomesφ′ =
|q′0, q1〉 = (|00〉 + |01〉)/

√
2, because the Hadamard gate transforms the state|q0〉 = (|0〉 + |1〉)/

√
2 into

|q′0〉 = |0〉. Clearly, the amplitudes of the|00〉 and|01〉 components of|φ〉 are amplified at the expense of the
|10〉 and|11〉 components, whose amplitudes get obliterated. Further, applying a Hadamard gate to|q1〉 as
well transforms the state|φ′〉 into |φ′′〉 = |q′0, q′1〉 = |00〉. Now, from the point of view of quantum amplitude
amplification, the state|φ′′〉 is obtained from|φ〉 by maximizing the amplitude of the|00〉 component at the
expense of the rest of the components of|φ〉.

In the anonymous leader election algorithm that is presented in Section 5.3, quantum amplitude ampli-
fication is used to achieve symmetry-breaking even in completely symmetric networks. The starting state
is a superposition of symmetric components, whose amplitudes get obliterated to the benefit of resulting
asymmetric components. When that state is measured and asymmetry is materialized, the processors can be
divided in at least two non-overlapping non-empty groups, which allows a leader to be chosen with certainty
within a finite number of such steps.

3 Models for Distributed Quantum Computing

Here we define the models for distributed quantum computing that are used by the research that we review
later. A common assumption for all of them is that there are nofaulty processors.

Section 4 and Section 5.1 use a standard distributed networkwith arbitrary topology and the added
capability of individual processors to store, manipulate,and measure quantum states as well as classical
states. The only means of communication between processorsare classical channels that can transmit only
classical information (bits). The restriction of only using classical communication while being able to do
quantum processing locally is known asLocal Operations and Classical Communication (LOCC). The size
of a message is assumed to be bounded byO(log n), and communication does not need to be synchronous.
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An important requirement is that a sufficient amount of entanglement is created between processors at
the time the network is set up. This is subsequently referredto aspre-shared entanglement. No a-priori
knowledge is assumed. We refer to this model asLOCC-ENTANGLE.

Section 5.2 uses a model that has all of the features ofLOCC-ENTANGLEwith the only difference
that here the network is anonymous. Anonymity means that individual processors are not guaranteed to
have unique identities, so in a problem such as leader election, identity information cannot be used as a
tie-breaker in order to guarantee correct solutions. This setting can be motivated by the situation in which
a large number of generic sensors with no identities are parachuted from a plane and subsequently need
to organize themselves for the purpose of conducting some computation. This model will be known as
LOCC-ENTANGLE-ANON.

Section 5.3 is also in the anonymous setting, but here quantum channels are present in the sense that
individual processors can send and receive quantum information (qubits) to and from other processors.
Further, pre-shared entanglement is not assumed in Section5.3. The algorithm presented there is formulated
in a synchronous setting but can be modified to work in the asynchronously as well. The only a-priori
knowledge that individual processors need is the total number of processors in the network or an upper
bound of it. We refer to this model asQCOMM-ANON.

It is clear that the assumption of pre-shared entanglement is not a trivial one. Entanglement is the essen-
tial resource that allows quantum advantages to be materialized. Currently, building large-scale distributed
entangled states has not been attempted, which is why it is not clear how efficiently they can be created
and whether the costs of creating them are not larger than theadvantages that they provide. Therefore, if
quantum technology is ever to be used in a distributed mannerin practice, future research must focus on
providing pre-shared entanglement as a sufficiently efficient primitive. In subsequent sections we discuss
different schemes for satisfying that assumption:

• Locally creating entangled pairs and exchanging qubits with neighbors if quantum channels are avail-
able (Section 4). Cost: one communicated qubit per shared entangled pair.

• Augmentingn − 1 pre-shared entangled pairs to ann-partite GHZ state by using non-local CNOT
gates in a binary-tree-like fashion (Section 4). Cost:O(n) classical communication.

• Obtaining ann-partite GHZ state fromn − 1 pre-shared entangled pairs that are distributed in a
spanning-tree-like fashion (Section 5.1). Cost:O(n) classical communication.

The lack of complete knowledge about entanglement also causes its use in the anonymous settings
of Section 5.2 to be questioned. In the motivating scenario of anonymity, the individual sensors do not
have unique identities, because they have to be very cheap and consume very little power, which is why
they cannot have any processing capabilities beyond what isabsolutely necessary. Therefore, it is not
clear whether it is fair to assume that such processors can bepre-entangled and given quantum-processing
capabilities when they cannot even be afforded individual identities. Further, the total lack of failures cannot
be practically guaranteed in such a scenario, which would then make the algorithms unusable.

4 Distributing Centralized Quantum Algorithms

Suppose there is an extremely useful centralized quantum algorithm, but only small quantum computers
with just a few qubits each are available. If one is to do something useful with the algorithm, one has to find
a way to distribute it over a collection of small quantum computers. The specific challenges related to that
and how to overcome them are described in [14, 36].
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To the best of our knowledge, Eisert et al. in [14] were the first to propose a solution to such a situation
together with proving optimality of the resource and communication requirements of their solution. In
general, the hurdles that one has to worry about in any porting of a centralized algorithm to a distributed
setting are related to how to divide the problem into pieces and how to arrange for coordination between
the individual computations. Local computations need to communicate with other parties at different times,
which unavoidably incurs considerable communication overhead. Eisert et al. use theLOCC-ENTANGLE
model.

The general strategy of distributing a centralized quantumalgorithm is to take the quantum circuit that
represents the centralized algorithm and draw horizontal lines that delineate the boundaries of each local
computation. For example, one can distribute the CNOT gate over two different computers by having the
control qubit at one computer and the target qubit at another(Fig. 3).

Figure 4: Distributed CNOT gate: The control and target are at two different computers.

Recall the universality of general single-qubit gates and the CNOT gate. It is clear that single-qubit
gates do not induce any non-local interactions. Hence, the only gate that requires special treatment in
the distributed context is the CNOT gate. Since all of the other multi-qubit gates that are of practical
interest can be reduced to CNOT and single-qubit gates, the distributed CNOT gate is the necessary and
sufficient primitive for building any distributed quantum circuit. Eisert et al. show a simple circuit (Fig.
4) for the distributed version of a CNOT gate and prove that one bit of classical communication in each
direction and one previously shared entangled pair form a necessary and sufficient condition for a non-local
implementation of the CNOT gate (assuming only LOCC). In fact, their circuit is a variation of quantum
teleportation [24].

Figure 5: Circuit implementing the distributed CNOT gate. The rectangles delineate the two main parts of
the circuit: “cat-entangler” and “cat-disentangler” as defined by Yimsiriwattana and Lomonaco Jr. [36, 35].
The horizontal line delineates the separation between the two computers.

In Fig. 4, qubitsA andA1 are located at one party and qubitsB andB1 are at another party.A is
in some arbitrary quantum state and its purpose is to act as a control to the CNOT gate onB, whereB
is assumed to be in some other arbitrary quantum state. To achieve that, the two parties use a previously
shared entangled pair (A1 andB1) to entangleA with B1, so thatB1 can act as a local control qubit for
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the CNOT gate that is applied onB. This is done by applying a CNOT gate betweenA andA1, measuring
A1, sending the measurement result as a classical bit to the other party (dashed line on the figure), and using
it as a control to the CNOT gate atB1. At that point,A andB1 are entangled, from which it follows that
B1 acting as control for the CNOT onB would be exactly as ifA was the control. After that, a Hadamard
gate and a measurement are applied onB1, after which the result is sent as a classical bit toA, where it
is used to control the application of a Pauli Z gate. These last steps are performed in order to disentangle
B1 andA, i.e. to completely restoreA to the state in which it was at the beginning. In the process, the
initially shared entanglement between the two parties is destroyed, and two classical bits are communicated
in both directions. The paper by Eisert et al. gives more details about this circuit, including a step by step
tracing of the intermediate states to show the desired result at the end. Since the CNOT gate is the only
multi-qubit gate in the universal set, its distributed version is enough for implementing any quantum circuit
in a distributed manner. Because the distribution concernsonly the control qubit, the same technique works
for any other controlled gate.

Eisert et al. in [14] also make the observation that generally, the required resources in terms of classical
communication and entanglement are proportional to the number of distributed CNOT gates that are used,
but as they point out, there may be remarkable exceptions. For example, when derived from the universal
set, the swap gate requires three CNOT gates as shown in Fig. 5. This means that three entangled pairs
and six classical bits of communication are the cost of implementing the swap gate by means of CNOT
gates. On the other hand, it is rather intuitive that the swapgate’s operation (simply exchanging the two
input qubits) can be achieved by doing two teleportations, each of which requires only one entangled pair
and the communication of two classical bits — a total of two entangled pairs and four classical bits, which
is significantly cheaper than the first approach. The authorssuggest that there may be other such cases that
require fewer resources than what is required by the straightforward usage of the universal set.

Figure 6: Swap gate implemented with three CNOT gates.

Yimsiriwattana and Lomonaco Jr. [36, 35] build on the work ofEisert et al. by distinguishing the two
main parts of the distributed CNOT circuit, giving them the names “cat-entangler” (the first rectangle drawn
in Fig. 4) and “cat-disentangler” (the second rectangle in Fig.4), and introducing the notion of “cat-like”
state as the state that results from applying the cat-entangler on a general quantum state. The cat-like state is
transformed back to the original quantum state after the cat-disentangler is applied on it. Their nomenclature
is useful in terms of abstracting the basic parts of the circuit, so that they can be used as primitives in a simple
manner later on, but the fundamental ideas were originated by Eisert et al.

Yimsiriwattana and Lomonaco Jr. also attempt to come to grips with the assumption of pre-shared
entangled pairs between parties that share non-local gates. They propose several methods for creating the
entangled pairs. One of them starts out by having each party locally create an entangled pair by using a
Hadamard gate together with a CNOT gate (Fig. 2). After this,each party exchanges one of the qubits of
its entangled pair with another party, and after a sufficientnumber of such exchanges, the global state is
ann-partite GHZ state ifn parties are involved. This approach requires the ability tophysically transport
the particles that carry the qubits — a quantum communication channel. However, the presence of quantum
communication channels contradicts the assumption ofLOCCthat is used in Eisert et al.’s proof of necessity
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of entanglement.
The other possibility for satisfying the pre-shared entanglement assumption according to [36] is to use

a Hadamard gate locally at one of the involved parties and a sequence of non-local CNOT gates that span
the rest of the processors in a binary-tree-like fashion (Fig. 6). Note that this approach requires a pre-shared
entangled pair for each of the non-local CNOT gates. Hence, even though the assumption of the pre-shared
n-partite GHZ state is alleviated by this strategy, there is still the need to somehow prepare entangled pairs
for the non-local CNOT gates that make this scheme work. In Fig. 6, we assume that the circuit starts
in the state|00000000〉. After applying the Hadamard gate to the first qubit, the joint state at point ‘a’ is:
(|00000000〉 + |10000000〉)/

√
2. After applying a CNOT gate on qubit 5 with control qubit 1, the state at

point ‘b’ is: (|00000000〉+ |10001000〉)/
√

2, because qubit 5 gets inverted whenever qubit 1 (the control) is
|1〉. Similarly, after applying CNOT gates on qubits 3 and 7 with controls 1 and 5, respectively, the state at
point ‘c’ is: (|00000000〉 + |10101010〉)/

√
2. Finally, CNOT gates are applied on qubits 2, 4, 6, and 8 with

controls 1, 3, 5, and 7 respectively. The resulting final state is therefore(|00000000〉 + |11111111〉)/
√

2. It
can be easily seen that this scheme reduces the task of establishing ann-partite shared GHZ state to obtaining
n − 1 entangled pairs that are shared among parties in a binary-tree-like fashion. The time complexity is
log n— the height of the binary tree — and the classical communication is2(n−1) because each non-local
CNOT gate communicates2 bits.

Figure 7: Creating ann-partite distributed GHZ state.

Finally, Yimsiriwattana and Lomonaco Jr. [36, 35] give two proof-of-concept examples (the quantum
Fourier transform and Shor’s algorithm [24, 28]) as direct applications of the distributing technique. They
illustrate the straightforward observation that any centralized quantum algorithm withk gates can be dis-
tributed overm computers with a communication cost ofO(k/m).

5 Quantum Algorithms for Leader Election

5.1 Leader Election with Pre-shared Entanglement

In the leader election problem, each processor in a network participates in a computation that chooses one
of the participating parties as the leader. It does not matter which party is chosen, as long as there is exactly
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one leader at the end, and all processors agree on the choice.The protocols with pre-shared entanglement
circumvent the classical impossibility of leader electionwithout communication by using entanglement
instead of communication.

Pal et al. in [25] discuss the problem of leader election in the context of theLOCC-ENTANGLEmodel.
Pal et al. assumelog n n-partite pre-shared GHZ states, such that each of then processors holds exactly
one qubit from each of thelog n entangled states. Consequently, each processor holdslog n qubits, and
the protocol consists of a single step — measure the local qubits. As a result, each processor holds a
binary number that constitutes the address of the elected leader. In other words, each individual qubit of a
processor is initially entangled in ann-partite GHZ state with then − 1 corresponding qubits at the other
n − 1 processors. Because of the form of the initial entanglement, quantum mechanics guarantees that the
resulting binary number after measuring is the same at all processors, which is what is required for the
protocol to be correct. Since the final outcome is determinedby the party that is the quickest to measure its
qubits, this scheme works in the asynchronous setting.

The measurements can be done asynchronously because whichever processor happens to measure its
qubits first, the local measurement outcome instantaneously determines the measurement outcomes of the
rest of the processors. This guarantees termination and uniqueness — the leader is elected withno commu-
nication at the cost of consuminglog n n-partite GHZ states and performinglog n measurements at each
party. Additionally, since all measurement outcomes are completely random with no bias, all processors
have equal chances. Thus, fairness is preserved as well.

This scheme would offer an extremely efficient way of solvingthe leader election problem. However,
just as we noted in Section 4, the assumption of pre-shared entanglement is not a trivial one. Pal et al. point
to [29], where they described a possible protocol to create the pre-sharedn-partite GHZ states. According
to the protocol, the creation of a single sharedn-partite GHZ state requiresn − 1 EPR pairs of the form,
(|00〉 + |11〉)/

√
2 (the same as a 2-partite GHZ state). Additionally, the EPR pairs need to be a-priori

distributed along the network in a specific way. If we interpret each EPR pair as supplying an “invisible”
link between two processors, then the collection of the links supplied by then − 1 EPR pairs should form
a spanning tree of the network. After that, Pal et al.’s protocol augments the entanglement provided by the
n− 1 EPR pairs to ann-partite GHZ state by using justLOCCat the cost ofO(n) communicated bits.

It is not clear whether the construction oflog n n-partite GHZ states requiresΩ(n log n) communicated
bits, given that a singlen-partite GHZ state costsO(n) bits of communication. Pal et al. do not raise this
question, but in a way similar to the construction of the non-local swap gate that we discussed in Section 4, it
may be possible to achieve some non-trivial savings whenlog n n-partite GHZ states are being constructed
concurrently. This is an interesting question to be addressed in future research. Even so, we are left with
another assumption — the presence ofn−1 EPR pairs that form a spanning tree of the network. To the best
of our knowledge there is no procedure to create the needed EPR pairs if we have the restriction ofLOCC
[2, 3]. On the other hand, if there is a quantum channel at hand, it is possible either to locally create an EPR
pair (e.g. parametric down-conversion in photonic setups [23, 11, 34, 26]) and send one of the particles to a
remote party or to entangle two spatially separated particles by making them interact with a third mediating
particle [5, 22]. In short, the complexity of Pal et al.’s protocol isO(n log n) total classical communication
in O(n) rounds andO(n log n) quantum communication if the initialn − 1 EPR pairs are created over
quantum channels.

5.2 Anonymous Leader Election with Pre-shared Entanglement

Other research has focused on leader election in theLOCC-ENTANGLE-ANONmodel. Classically, the
problem of anonymous leader election is known to be unsolvable because of the impossibility to simulta-
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neously guarantee uniqueness and termination [21]. However, it appears that quantum mechanics can come
to the rescue here. D’Hondt and Panangaden [7] prove that quantum entanglement is a necessary and suf-
ficient resource for arriving at a correct solution, i.e., one that satisfies both uniqueness and termination.
The specific kind of entanglement that is needed is ann-partite W state (see Section 2.3). Notice that each
component of the superposition that makes up the W state has exactly one qubit as|1〉 and the rest of the
qubits are|0〉. When the W state is destroyed after measuring all qubits, the resulting joint state is exactly
one of the components of that superposition. If the W-state is initially prepared, so that each of then qubits
resides on a distinct processor, then after each processor measures its qubit, the one that gets 1 as a result
becomes the leader. The W entanglement guarantees that the qubits of the rest of the processors are zero.
Regardless of the specific moment when each processor does its measurement, as soon as one of them gets 1
as a measurement result, the superposition instantaneously collapses to the component where the qubit that
is held by the lucky processor is|1〉 and the rest are|0〉.

Here again one faces the assumption that the entanglement needs to be taken care of before one starts
solving the leader election problem. Even worse, each time an election is done, the entanglement is de-
stroyed, so whatever efficient procedure there is to prepareit, that procedure must allow repeated usage in
order to recreate/refresh the initial entangled conditionof the network. There are no indications that the
distributedn-partite W state is any easier to prepare than the corresponding GHZ state, so the research in
this direction ends with the same problem as the previously considered cases — a practical implementation
of this scheme needs to first have a way of preparing then-partite W state. D’Hondt briefly considers this
issue in [6]. She finds a quantum circuit to generate the 3-partite W state but finds it difficult to generalize
to then-partite case. She points to [23], where the experimental physics group of Mikami et al. offers a way
to directly constructn-partite W states via a photonic setup.

5.3 Anonymous Leader Election Without Pre-shared Entanglement

Tani et al. in [31, 30, 32] assume theQCOMM-ANONmodel. They show that the general anonymous leader
election problem has a correct quantum solution that can be achieved with certainty in polynomial time and
communication without assuming any prior entanglement. Eliminating the dubious entanglement assump-
tion that had to be made in Section 5.2 while still circumventing the classical impossibility for anonymous
leader election is a very significant result. Tani et al. present several algorithms, whose common approach
to solving the problem consists of gradual symmetry breaking by using quantum amplitude amplification,
which is significantly different from the instant solution of D’Hondt and Panangaden. However, because
no prior entanglement is assumed, these algorithms use quantum channels to create a number ofn-partite
shared entangled states that can be used to gradually break the symmetry in the network until a leader is
chosen.

5.3.1 Tani et al.’s Algorithm

The complexities of the algorithm of Tani et al. [31, 30] thatwe describe here areO(n3) time andO(n4)
quantum and classical communication. Withn initially eligible parties, the algorithm proceeds inn −
1 phases in each of which zero or more but not all parties becomeineligible for election. We usel to
denote the current number of eligible parties. Consequently, throughout the execution of a single phase,l
decreases or stays the same but never increases or becomes zero. Each partyi for i = 0, . . . , n − 1 has a
number of quantum registers, initially in the state|0〉: R0i, R1i, Si, X0i, X1i, . . . , Xdi, wheredi is the
number of neighbors ofi. Note that the network is anonymous and the identifieri is used only for notation
purposes here. Also, each partyi has classical registersk, zi, andzmax. Registerk is initialized ton and
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is decremented by 1 after a phase is completed. An important invariant to be clarified later is thatk ≥ l for
all phases. Registerszi andzmax hold 2-bit numbers that are initialized to 0. The algorithm is divided in
subroutines A, B, and C. The three subroutines, together with some local computations, form a single phase.

The execution starts by changing the state inR0i to (|0〉 + |1〉)/
√

2 for all eligible parties and leaving
it as initialized for all ineligible parties. Then Subroutine A is executed. This subroutine either creates a
GHZ state over all eligible parties (“consistent state”) ora state that guarantees the elimination of some of the
eligible parties (“inconsistent state”). Consistent and inconsistent states are formally defined in [31, 30]. For
the purposes of the algorithm, a consistent state, when measured, results in identical measurement results
for all of the involved parties. On the other hand, with an inconsistent state, some parties have different
measurement results from others. At the beginning of the subroutine, each partyi locally entangles in a
GHZ state (as shown in Section 2.3) the qubit fromR0i with the qubits inX0i, . . . ,Xdi. Theni exchanges
the contents ofX1i, . . . ,Xdi with its neighbors. Because all of the qubits in a GHZ state are equivalent to
one another, it does not matter the qubit from which of theX registers is sent to which neighbor. Therefore,
each partyi is assumed to have chosen a random one-to-one mapping to map itsX1i, . . . ,Xdi registers
to its ports before the algorithm begins. Then, the neighborexchange is executed by sending each qubit
from X1i, . . . ,Xdi along the appropriate mapped port and placing the qubit thatis received along that
port in the appropriate register according to the mapping again. After the neighbor exchange, a simple
local computation is done on theX0i, . . . ,Xdi registers in order to determine consistency/inconsistency
of the components of the state that is formed by them, and registersX0i andSi are set to the outcome
of this computation. It is assumed that|0〉 in registerSi means “consistent” and|1〉 means “inconsistent”.
Afterwards, by usingX0i instead ofR0i as the entangling register, Subroutine A repeats the described
local entanglement, neighbor exchange, and local computation n − 1 times in order for eachi to obtain
the consistency/inconsistency information about the components of the global state. The outcome of the
execution of Subroutine A is an entangled state consisting of all registersSi andR0i:

|ψ〉 = |S0 . . . Sn−1〉|R00 . . . R0n−1〉 =
∑

x∈{0,1}n

|S0x . . . S(n−1)x
〉(|x〉 + |x̄〉)/

√
2n+1, (3)

where x̄ represents the complement of then-bit bit-string x. Each of the2n components of the global
state defined by theR0i registers for alli is a superposition of a distinct bit-string of lengthn and its
complement. With each such component is associated a consistency/inconsistency indication provided by
theSi registers. In each component of the superposition in the|ψ〉 state above (fixedx), the values ofSi

are either all “consistent” or all “inconsistent” for alli. This determines the consistency/inconsistency of
the associated component of the global state defined by theR0i registers. For example, ifn = 2 and both
parties are initially eligible, an execution of SubroutineA yields the state:|ψ〉 = |S0, S1〉|R00, R01〉 =
(|00〉(|00〉 + |11〉) + |11〉(|01〉 + |10〉) + |11〉(|10〉 + |01〉) + |00〉(|11〉 + |00〉))/2

√
2 .

The time complexity of Subroutine A isO(n2), because there aren rounds of communication — the
neighbor exchanges donen−1 times. Each round takesO(n) time, because Tani et al. assume that a message
can only be sent to one neighbor at a time, and each party can haveO(n) neighbors. When the subroutine is
executed inn−1 phases, the total time taken by it becomesO(n3). The quantum communication complexity
of Subroutine A isO(n3), because each of then parties doesn − 1 neighbor exchanges ofO(n) qubits,
again because each party can haveO(n) neighbors. Execution inn − 1 phases makes the total quantum
communicationO(n4).

After Subroutine A is executed, each partyi measures itsSi register. This collapses the superposition
in the |ψ〉 state above to one of its components. If the measurement outcome is “consistent”, then the
resulting global state defined by allR0i’s has collapsed to a consistent state; otherwise, the global state
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is inconsistent. If the eligible parties find out in this way that they share a consistent state, they execute
Subroutine B, which attempts to transform that state to a superposition of inconsistent states. Subroutine B
does not always succeed, as will be explained below, but is guaranteed to have made possible the elimination
of n− 1 eligible parties by the end of the last phase. For technical reasons that we do not elaborate here, the
transformation from a consistent to an inconsistent state is achieved by using an auxiliary qubitR1i at each
processori, so that each processor has two qubits in two quantum registers,R0i andR1i. The purpose of
Subroutine B is to transform the state consisting of2l qubits (two qubits at each of thel eligible parties) to a
state that has zero amplitudes for the superposition components that represent the possibilities of|R0i, R1i〉
simultaneously giving the same measurement results for alli. Observe that|R0i, R1i〉 can be|00〉, |01〉,
|10〉, or |11〉 for any i. Therefore, in terms of the tensor product notation that wasdefined in Section 2.1,
the components that need to be with zero amplitudes are exactly |00〉⊗k, |01〉⊗k, |10〉⊗k, and|11〉⊗k. These
are the components that can cause identical measurement results everywhere. If they are not all with zero
amplitudes, there is a non-zero probability that after the completion of a phase, no eligible party is excluded
from the race.

To do its transformation, Subroutine B applies one of two possible gates —U andV in Fig. 7 —
depending on whether the parameterk = n − i in the i-th phase is odd or even. The reasons for using two
different gates for odd and even phases as well as the definitions of these gates are entirely technical and are
omitted from our discussion. TheU andV gates are non-standard and are specified in [31, 30]. They canbe
derived from the more general concept of quantum amplitude amplification that was introduced in Section
2.4. Subroutine B is essentially an implementation of that technique in the sense that it obliterates the
amplitudes of the undesirable components of the global state, i.e. the consistent components, and amplifies
the amplitudes of the desirable ones, i.e. the inconsistentcomponents. The circuits that simulate the cases
k = 3 andk = 2 are shown in Fig. 7. Point ‘a’ of the circuit fork = 3 is the entry point of Subroutine B.
Before that the 3-partite GHZ state consisting of the qubitsin R0i for i = 1, 2, 3 is established, i.e. the three
parties are sharing a consistent state. Between points ‘a’ and ‘b’, CNOT gates are applied onR0i andR1i at
each of the three parties. As a result, at point ‘b’, the global state is(|000000〉 + |111111〉)/

√
2. After that,

each party applies theV gate on its qubits, which obliterates the amplitudes of the problematic consistent
components, and the state is transformed into a large superposition of inconsistent states. The resulting
superposition is too large to be given here, but the interested reader can easily implement the simulation
using the first circuit from Fig. 7. The simulation software that we used can be obtained from [10]. For the
casek = 2, point ‘a’ shows again the joint state at the subroutine entry: (|0000〉 + |1010〉)/

√
2. Now each

party applies theU gate and as a result, the consistent components are suppressed. The resulting state is a
superposition of inconsistent states:|R00, R10, R01, R11〉 = −i(|0010〉+|1000〉)/

√
2. It can be easily seen

that both of the components of this state are inconsistent, i.e. whenR00, R10, R01, andR11 are measured,
the two parties are guaranteed to get different results.

A significant drawback of Subroutine B is that the U and V gatesare parameterized overk, which is used
as an upper bound for the number of eligible parties,l. Subroutine B successfully transforms a consistent
state into an inconsistent superposition only whenk = l. However, this algorithm does not operate with the
exact value ofl, because a significant amount of additional work would be required in order for each party to
know the value ofl for each phase. That work is circumvented here by just using the upper boundk, which
gets gradually tightened in subsequent phases until it hitsthe actual value ofl. At that point, Subroutine B
is guaranteed to work, which makes it possible to decreasel by at least1 and no more thanl− 1. In the next
phases,k continues to be an upper bound forl and the process of gradual tightening continues untilk = l
again. At the conclusion ofn− 1 phases, there is exactly one eligible party, which is the elected leader.

The elimination of eligible parties is attempted by Subroutine C, which succeeds whenever the global
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Figure 8: Quantum circuit simulations for the cases ofk = 3 andk = 2 eligible parties.

state after Subroutine A has been collapsed to an inconsistent state, or whenever Subroutine B has succeeded
in transforming a consistent state to an inconsistent one. Before Subroutine C, each of the eligible partiesi
measures itsR0i andR1i to form a 2-bit numberzi. Only the parties with the highest resultingzi remain
eligible for the next phase. The elimination of the rest of the parties is done by having all eligible parties
execute Subroutine C, which is just a simple classical computation of the maximumzmax = max0≤i<n(zi)
over the entire network. After Subroutine C is done, if partyi’s zi is equal tozmax, i remains eligible;
otherwise, it makes itself ineligible. Suppose that beforethe measurements ofR0i andR1i for all eligible i,
the global state formed by them was inconsistent. Then the measurements yield at least two distinctzi values
around the network, which forces some eligible parties to become ineligible after executing Subroutine C.
However, in the case of a consistent state, all eligible processorsi measure the samezi values and nobody
can be excluded after Subroutine C, because everybody’szi equalszmax.

The time complexity of Subroutine C isO(n2) becausezmax is computed inn−1 rounds, each of which
takesO(n) steps, because a message can be sent to only one neighbor at a time and each party can have
O(n) neighbors. When this is done inn− 1 phases, the total time taken by this subroutine becomesO(n3).
The classical communication complexity of Subroutine C isO(n3) because each of then parties doesn− 1
neighbor exchanges ofO(n) bits, again because each party can haveO(n) neighbors. When this is done in
n− 1 phases, the total classical communication complexity addsup toO(n4).

It should be noted that it is not clear whether theU andV gates can be implemented with a constant
number of gates from the universal set. Moreover, the matrixrepresentations of theU andV gates contain
irrational numbers, which makes it unclear whether they canbe implemented exactly at all. Hence, when
they are applied only with finite precision, the amplitudes of the consistent components are greatly sup-
pressed by Subroutine B whenk = l but are still non-zero. For example, in the simulations thatwe did for
the casek = 3, the amplitude for the state|000000〉 is −2.7734−10 + 2.4813−10i when the gate is applied
with the precision of 9 significant figures. Apparently, someadditional work is needed to eliminate such
residues, because otherwise the correctness of the proposed algorithm is not guaranteed in practice. Further,
Tani et al.’s algorithm has no tolerance for failures, because Subroutine B requires all eligible parties to
execute it correctly in order for symmetry breaking to work with certainty. Another practical consideration
concerns the complexities of Tani et al.’s algorithms — theyare not competitive with the existing classical
algorithms. Even though the classical algorithms in this setting are not guaranteed to be always correct, they
are capable of electing a leader with high probabilities andmuch smaller time and communication costs.
Tani et al. do not investigate the optimality of their algorithms, which leaves an open possibility for more
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efficient quantum algorithms.

5.3.2 Other Algorithms

The above algorithm is referred to as Algorithm I in Tani et al.’s original work. They also have Algorithm
II [31, 30], which has the cost ofO(n2 log n) quantum communication andO(n6 log2 n) time and classical
communication. The advantage over Algorithm I is that the quantum communication is lower, because
the number of phases islog n instead ofn. However, that is achieved at the price of much higher time
and classical communication costs. Tani et al. in [32] give two more algorithms for solving anonymous
leader election. The first has the same complexities as Algorithm I but explicitly uses the technique of exact
quantum amplitude amplification that was introduced in Section 2.4. The second is for the special case when
n is a power of 2. It has only a linear number of rounds, but its drawback is that it hasO(n6 log n) quantum
communication.

6 Open Problems

Notably, quantum computing promises significant advantages over classical computing in some cases. Nev-
ertheless, there are still important issues that have not been addressed fully in the research that we reviewed.
Undoubtedly, the whole area of quantum computing can benefitgreatly from new work that investigates
them:

• Pre-shared multi-partite GHZ and W entanglement: These appear as assumed resources everywhere
throughout Section 4, Section 5.1, and Section 5.2. To the best of our knowledge, there is no research
work that gives a complete answer regarding the way in which such assumptions can be satisfied in a
practical setting. The question whether this can be done efficiently must be answered if the distributed
quantum computing schemes are ever to become practical. It is also possible that the cost of preparing
multi-partite shared entanglement outweighs the advantage given by it. Preparation of then-partite
GHZ state seems to be easier than the corresponding W state. Indeed, with the presence of quantum
communication links between all processors in the network,it is feasible to create the GHZ state by
locally entangling and exchanging qubits. Locally entangled pairs can be produced on-demand by the
parametric down-conversion techniques that were mentioned in Section 1. More experimental work
on creating entanglement and manipulating it would be extremely beneficial.

• Resource savings in non-local circuits similar to the swap gate case: As discussed in Section 4, com-
plex circuits that use large numbers of non-local gates may be able to do better than use one entangle-
ment pair and two bits of classical communication per non-local gate.

• Generatinglog n n-partite GHZ states: The version of leader election that wasdiscussed in Section
5.1 is solved when there arelog n n-partite pre-shared GHZ states. Similarly to the possibility that
was noted in Section 5.1, the cost per state of preparing thelog n states together could be lower than
the cost of preparing a single such state by itself. In particular, [29] describes how to prepare a single
n-partite GHZ state withO(n) communication cost. Is it possible to preparelog n such states at a
cost lower thanO(n log n)?

• Fault-tolerant leader election: The algorithms with pre-shared entanglement do not work in the pres-
ence of faults, because even if a unique leader is agreed upon, that leader may be faulty. The algo-
rithm by Tani et al. that was discussed in Section 5.3 also cannot tolerate faults, because the essential
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symmetry breaking via quantum amplitude amplification in Subroutine B works only if all eligible
parties execute it correctly. The importance of fault-tolerance in practice motivates the search for
fault-tolerant quantum leader election.

• Other applications: It would be beneficial to see how the discussed methods and results can be applied
to versions of the leader election problem in settings otherthan the ones that have been considered
thus far. Also, it is quite likely that other important distributed problems can benefit in similar ways.

7 Summary

We have reviewed the present research regarding the two aspects in which quantum computing can benefit
from and contribute to distributed computing. First, sincethere is a perceived practical difficulty of scaling
up existing quantum computing implementations, it could bepossible to solve large problems by using
a number of small quantum computers together. Second, important problems from classical distributed
computing such as leader election can potentially benefit from using quantum resources. We presented
trivial protocols that solve leader election with no communication but with the assumption that previously
shared entanglement is in place. We also considered the anonymous leader election problem, where the best
classical algorithms elect a unique leader in finite time with high probability, but the quantum algorithms
solve the problem with certainty. Even though the research that we have reviewed has offered impressive
solutions, it has done so with the non-trivial assumption ofthe ability to create and maintain shared entangled
states. Not only does this assumption remain to be shown satisfiable, but also the additional cost incurred
by satisfying it remains to be evaluated in order to see whether it does not outweigh the advantages of
quantum processing. The only work that does not assume any prior entanglement is the work of Tani et al.
that was discussed in Section 5.3. However, their algorithms have serious practical drawbacks as well. It
is currently unknown whether the essential unitary transformations from Subroutine B that circumvent the
classical impossibility result can be implemented exactlyand how much overhead their implementations
would incur. Also, the correct solution of the anonymous leader election problem that is achieved with
certainty by the quantum algorithm comes at the price of higher time and communication complexities,
when compared with the classical randomized algorithms that achieve a correct solution only with high
probability.
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