
Marh Madness is (NP-)Hard(draft)David Liben-Nowell, Moses Liskov, Chris Peikert, Abhi Shelat, Adam Smith,and Grant WangLaboratory for Computer SieneMassahusetts Institute of TehnologyCambridge, MA, 02139, USAfdln,mliskov,peikert,abhi,asmith,gjwg�theory.ls.mit.eduAbstrat. We formally de�ne the Marh-Madness deision problem(inspired by popular betting pools for the NCAA basketball tourna-ment), and prove it NP-omplete.1 IntrodutionThe National Collegiate Athleti Assoiation (NCAA) Basketball Tournament[3℄,held every Marh, is a tournament among the top 64 (or more reently, 65)ollegiate basketball teams in the United States. The tournament is set up insingle-elimination form: to start, eah team oupies the leaf of a omplete bi-nary tree. Two teams oupying sibling nodes play against eah other, and thewinner moves up to oupy its parent node, while the loser is out of the tour-nament. This proess ontinues until only one team (oupying the root node)remains, and that team is rowned the national hampion.Popular distrations during the tournament are so-alled \Marh Madness"pools, often organized among friends and o-workers. Eah partiipant in a poolpredits the winner of every game, by �lling out the internal nodes of the tour-nament tree, prior to the start of the tournament. One the tournament begins,everyone's preditions are made publi. Partiipants get some number of pointsfor eah winner they orretly predit (note that they need not predit whihteam is defeated by the winner). After the entire tournament has been played,the partiipant with the most points is delared the winner of the pool. Mostsoring methods give more points for orret preditions in later games, beauseit is hard to predit whih teams will advane many rounds, and to predit thewinner of a game between two losely-mathed teams.As the tournament progresses, many interesting phenomena an our. Forexample, many partiipants may have predited Team A to win many games,when in fat it may lose its �rst game. In this ase, those partiipants lose thepotential to gain many points later in the tournament, beause Team A annotpossibly win any of the games it was predited to win. For this reason, early inthe tournament one partiipant may have many more points than all the others,



but no hope of winning the pool (beause the teams he piked to win manygames have already lost).As a partiipant of a Marh Madness pool, one might naturally ask: \Giventhe results of the tournament thus far, is there any way I an win the pool? Or isit the ase that, no matter whih teams win from now on, some other partiipantwill have a higher sore than me?" Of ourse, for the atual onstant-sized NCAAtournament tree, this question an be answered in time linear in the size of thepool, by enumerating all tournament outomes in onstant time. However, weshow that under an appropriate formalization (i.e., in the sizes of the pool andthe tournament tree), answering this question is NP-omplete. Our results holdfor a wide lass of soring methods; see the remark at the end of Setion 4.This result is interesting beause it leaves the partiipant with little hoiebut to keep his interest in tournament, beause he annot eÆiently tell if he iseliminated from the pool until the end of the tournament (unless P=NP). Notethat we never make any assumptions about how likely it is for a team to win(i.e., odds or probabilities); even if a partiipant were omnipotent in the sensethat he ould ontrol the outome of any remaining games, he still would not beable to eÆiently determine whether doing so would allow him to win the pool.This result is also interesting in ontrast to similar problems. In Major LeagueBaseball, for example, after the season has started, there is an eÆient proedure(by a redution to a ow problem [4℄) for determining if a team an make it tothe playo�s or not (even though this deision is based on the outomes of all theother games in the same league).2 De�nitionsBefore formally de�ne the Marh-Madness problem, we �rst need to de�nesome related terms.De�nition 1 (Marh-Madness Voabulary). We de�ne the following:{ A tournament (T; �) is a omplete binary tree T (having verties V , leavesL, and internal nodes I), with a bijetive labelling � : L! f1; : : : ; jLjg.{ A braket � for a tournament (T; �) is a omplete set of preditions aboutthe games of a tournament. That is, � is a labelling of V , where �(l) = �(l)for all l 2 L, and �(u) 2 f�(s); �(t)g, for eah u 2 I having hildren s; t.{ A partial result � of a tournament (T; �) is a labelling of some V 0 � V; V 0 �L, where �(l) = �(l) for all l 2 L, and for every u 2 I having hildren s; t:u 2 V 0 ) s; t 2 V 0 and �(u) 2 f�(s); �(t)g.{ A tournament result for a tournament (T; �) is simply a partial result de�nedon all of V . A tournament result � is onsistent with a partial result �,written as � � �, if �(v) = �(v) for all nodes v for whih � is de�ned.{ The sore ��(�) of a braket � relative to a partial result � (de�ned on V 0)is jfv 2 V 0 \ I : �(v) = �(v)gj.



De�nition 2 (Marh-Madness). The languageMarh-Madness = f(T; �; Æ; f�jgmj=1; �) :9 a tournament result � � � suh that��(Æ) � maxj=1;:::;m��(�j)g;where{ (T; �) is a tournament,{ Æ is the distinguished braket for (T; �),{ f�jgmj=1 is a set of m ompeting brakets for (T; �), and{ � is a partial result of (T; �).3 Redution from an NP-omplete problemWe redue the NP-omplete problem 3SAT to Marh-Madness. We design afuntion � whih, given a 3SAT instane � having n variables fxigni=1 and mlauses fjgmj=1, outputs an instane (T; �; Æ; f�jgmj=1; �) of Marh-Madness,with one ompeting braket �j for eah lause j in �. The tree T is a ompletebinary tree having 8 �2dlog2 ne leaves. It is onstruted by onneting n \widgets"of 8 leaves eah, one orresponding to eah variable xi in �, plus enough otherwidgets to omplete the binary tree. The labelling � of the leavesL is an arbitraryinjetive funtion.We now desribe the partial results � and the distinguished braket Æ. First,we arbitrarily assign the results of all the �rst-round games by labelling theparents of L. Then Æ is onstruted as follows: in eah of n widgets orrespondingto variables from �, it makes the orret preditions in exatly three of the four�rst-round games. The predited winner of the other �rst-round game is alsopredited to win in the seond round, but not in the third round. Finally, in theother seond-round game, the winner is hosen arbitrarily. See Figure 1 for theatual preditions we will use, with the partial results from � inluded. Notethe speial vertex vi, and that the distinguished braket's predition at vertex viannot possibly be orret, given �. Also note that for eah vi, bi is its \bottom"hild (the lower of its two hildren in Figure 1), and ui is its \upper" hild.We now desribe how the ompeting brakets are onstruted. For eah lausej in � involving distint variables xr; xs; xt we onstrut a ompeting braket�j , whih is idential to Æ, exept in the widgets orresponding to variablesxr; xs; xt. In plae of the preditions shown in Figure 1, we use the preditionsfrom one of the two widgets pitured below. For eah non-negated variable inthe lause, we inlude the preditions shown in Figure 2. For eah variable thatappears negated in the lause, we inlude the preditions shown in Figure 3.Note that in eah widget, there is one predition whih is not �xed. In two ofthese three widgets, �j makes the inorret predition, and in the other widget�j makes the orret predition.
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Fig. 1. A widget from T , orresponding to the variable xi in �, with distinguished drawÆ and partial results �. The upper half of eah internal node u ontains Æ(u), while thelower half ontains �(u) (if it is de�ned). Note that Æ(vi) is inorret, regardless of theoutome of the game between B and C.
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Fig. 2. Partial results �, and preditions from �j for widget i, where lause j ontainsthe literal xi. Note that it is possible for �j(vi) to be orret. Also note that thepredition for the game between G and H is not �xed.
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Fig. 3. Partial results �, and preditions from �j for widget i, where lause j ontainsthe literal xi. Note that it is possible for �j(vi) to be orret. Also note that thepredition for the game between G and H is not �xed.



4 Corretness of the redutionWe are now ready to prove the following theorem.Theorem 1. � 2 3SAT () � (�) = (T; �; Æ; f�jgmj=1; �) 2Marh-Madness.Proof: We �rst make a few observations about the brakets. First, note thatfor all j, ��(Æ) = 2+ ��(�j). Next, note that for all j, and for all (exept three)nodes v for whih � is unde�ned, Æ(v) = �j(v). The three exeptional nodes arepreisely vr; vs; vt, where variables xr; xs; xt appear in lause j of �. Combiningthese observations, we see that for any � � �, ��(�j) > ��(Æ) ) �j(vr) =�(vr); �j(vs) = �(vs); �j(vt) = �(vt).): let x be a satisfying assignment of �. Then we onstrut a tournamentresult � as follows: for eah i, if xi is true, let �(vi) = �(bi); if xi is false, let�(vi) = �(ui). Assign � arbitrarily (but so that it is a tournament result) at allother nodes.Beause every lause in � is satis�ed by x, eah lause j ontains sometrue literal, say either some variable xi or its negation. Then �j(vi) 6= �(vi) byonstrution, so by the above observation, ��(Æ) � ��(�j) as desired.(: given a tournament outome � for whih Æ has the highest sore, onstruta satisfying assignment x for � as follows: if �(vi) = �(bi), let xi be true, otherwiselet xi be false. Beause the distinguished braket Æ has the highest sore, eahompeting braket �j has �j(vi) 6= �(vi) for some variable xi involved in lausej . By onstrution, the orresponding literal (either xi or its negation) is truein j , so j is satis�ed, therefore x satis�es �. �Corollary 1. Marh-Madness is NP-omplete.Proof: The running time of the redution is polynomial in the size �: buildinga widget requires O(1) time, as does onneting two disonneted binary trees.At most 2n widgets are reated, and are onneted into one tree. Creating eahof the m + 1 draws require time linear in the size of tree, so the total runningtime of the redution is O(mn) = poly(j�j).Finally,Marh-Madness 2 NP: given any instane (T; �; Æ; f�jg; �), a wit-ness of membership in Marh-Madness onsists of any tournament result� � � suh that ��(Æ) � maxj=1;:::;m ��(�j). Cheking the validity of the witnessonsists of ounting the number of orret preditions from eah braket, andverifying that the distinguished braket has the highest sore. This again anbe done in time polynomial in the number of teams in the tournament and thenumber of brakets in the pool.By Theorem 1, 3SAT �P Marh-Madness, and the result follows. �Remark: typially, atual betting pools o�er more points for orretly predit-ing games in later rounds of the tournament. For example, eah �rst-round gamemay be worth 1 point, eah seond-round game 2 points, and so on. Our resultsremain valid under these types of soring systems, as long as all games in thesame round are worth the same number of points, and the value of a seond-round game is at most a polynomial (in the number of brakets) fator of the



value of a �rst-round game. If the value of a seond-round game is s, we onlyneed the distinguished braket's sore to lead all other brakets' sores by be-tween 2s and 3s � 1 (inlusive) after the �rst round. Therefore we an modifythe redution by enlarging the size of the widgets so that eah lause's braketmakes enough inorret preditions in the �rst round.5 AknowledgementsWe would like to thank Umesh Shankar for a helpful disussion, in whih heonjetured that Marh-Madness might be NP-omplete.Referenes1. Stephen A. Cook. The omplexity of theorem-proving proedures. In ACM Sympo-sium on Theory of Computing, pages 151{158, 1971.2. Mihael R. Garey and David S. Johnson. Computers and Intratibility. W. H. Free-man and Company, 1979.3. NCAA �nal four tournament website. http://www.finalfour.net.4. Kevin Wayne. A new property and a faster algorithm for baseball elimination. InSODA: ACM-SIAM Symposium on Disrete Algorithms (A Conferene on Theoret-ial and Experimental Analysis of Disrete Algorithms), 1999.


