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t. We formally de�ne the Mar
h-Madness de
ision problem(inspired by popular betting pools for the NCAA basketball tourna-ment), and prove it NP-
omplete.1 Introdu
tionThe National Collegiate Athleti
 Asso
iation (NCAA) Basketball Tournament[3℄,held every Mar
h, is a tournament among the top 64 (or more re
ently, 65)
ollegiate basketball teams in the United States. The tournament is set up insingle-elimination form: to start, ea
h team o

upies the leaf of a 
omplete bi-nary tree. Two teams o

upying sibling nodes play against ea
h other, and thewinner moves up to o

upy its parent node, while the loser is out of the tour-nament. This pro
ess 
ontinues until only one team (o

upying the root node)remains, and that team is 
rowned the national 
hampion.Popular distra
tions during the tournament are so-
alled \Mar
h Madness"pools, often organized among friends and 
o-workers. Ea
h parti
ipant in a poolpredi
ts the winner of every game, by �lling out the internal nodes of the tour-nament tree, prior to the start of the tournament. On
e the tournament begins,everyone's predi
tions are made publi
. Parti
ipants get some number of pointsfor ea
h winner they 
orre
tly predi
t (note that they need not predi
t whi
hteam is defeated by the winner). After the entire tournament has been played,the parti
ipant with the most points is de
lared the winner of the pool. Mosts
oring methods give more points for 
orre
t predi
tions in later games, be
auseit is hard to predi
t whi
h teams will advan
e many rounds, and to predi
t thewinner of a game between two 
losely-mat
hed teams.As the tournament progresses, many interesting phenomena 
an o

ur. Forexample, many parti
ipants may have predi
ted Team A to win many games,when in fa
t it may lose its �rst game. In this 
ase, those parti
ipants lose thepotential to gain many points later in the tournament, be
ause Team A 
annotpossibly win any of the games it was predi
ted to win. For this reason, early inthe tournament one parti
ipant may have many more points than all the others,



but no hope of winning the pool (be
ause the teams he pi
ked to win manygames have already lost).As a parti
ipant of a Mar
h Madness pool, one might naturally ask: \Giventhe results of the tournament thus far, is there any way I 
an win the pool? Or isit the 
ase that, no matter whi
h teams win from now on, some other parti
ipantwill have a higher s
ore than me?" Of 
ourse, for the a
tual 
onstant-sized NCAAtournament tree, this question 
an be answered in time linear in the size of thepool, by enumerating all tournament out
omes in 
onstant time. However, weshow that under an appropriate formalization (i.e., in the sizes of the pool andthe tournament tree), answering this question is NP-
omplete. Our results holdfor a wide 
lass of s
oring methods; see the remark at the end of Se
tion 4.This result is interesting be
ause it leaves the parti
ipant with little 
hoi
ebut to keep his interest in tournament, be
ause he 
annot eÆ
iently tell if he iseliminated from the pool until the end of the tournament (unless P=NP). Notethat we never make any assumptions about how likely it is for a team to win(i.e., odds or probabilities); even if a parti
ipant were omnipotent in the sensethat he 
ould 
ontrol the out
ome of any remaining games, he still would not beable to eÆ
iently determine whether doing so would allow him to win the pool.This result is also interesting in 
ontrast to similar problems. In Major LeagueBaseball, for example, after the season has started, there is an eÆ
ient pro
edure(by a redu
tion to a 
ow problem [4℄) for determining if a team 
an make it tothe playo�s or not (even though this de
ision is based on the out
omes of all theother games in the same league).2 De�nitionsBefore formally de�ne the Mar
h-Madness problem, we �rst need to de�nesome related terms.De�nition 1 (Mar
h-Madness Vo
abulary). We de�ne the following:{ A tournament (T; �) is a 
omplete binary tree T (having verti
es V , leavesL, and internal nodes I), with a bije
tive labelling � : L! f1; : : : ; jLjg.{ A bra
ket � for a tournament (T; �) is a 
omplete set of predi
tions aboutthe games of a tournament. That is, � is a labelling of V , where �(l) = �(l)for all l 2 L, and �(u) 2 f�(s); �(t)g, for ea
h u 2 I having 
hildren s; t.{ A partial result � of a tournament (T; �) is a labelling of some V 0 � V; V 0 �L, where �(l) = �(l) for all l 2 L, and for every u 2 I having 
hildren s; t:u 2 V 0 ) s; t 2 V 0 and �(u) 2 f�(s); �(t)g.{ A tournament result for a tournament (T; �) is simply a partial result de�nedon all of V . A tournament result � is 
onsistent with a partial result �,written as � � �, if �(v) = �(v) for all nodes v for whi
h � is de�ned.{ The s
ore ��(�) of a bra
ket � relative to a partial result � (de�ned on V 0)is jfv 2 V 0 \ I : �(v) = �(v)gj.



De�nition 2 (Mar
h-Madness). The languageMar
h-Madness = f(T; �; Æ; f�jgmj=1; �) :9 a tournament result � � � su
h that��(Æ) � maxj=1;:::;m��(�j)g;where{ (T; �) is a tournament,{ Æ is the distinguished bra
ket for (T; �),{ f�jgmj=1 is a set of m 
ompeting bra
kets for (T; �), and{ � is a partial result of (T; �).3 Redu
tion from an NP-
omplete problemWe redu
e the NP-
omplete problem 3SAT to Mar
h-Madness. We design afun
tion � whi
h, given a 3SAT instan
e � having n variables fxigni=1 and m
lauses f
jgmj=1, outputs an instan
e (T; �; Æ; f�jgmj=1; �) of Mar
h-Madness,with one 
ompeting bra
ket �j for ea
h 
lause 
j in �. The tree T is a 
ompletebinary tree having 8 �2dlog2 ne leaves. It is 
onstru
ted by 
onne
ting n \widgets"of 8 leaves ea
h, one 
orresponding to ea
h variable xi in �, plus enough otherwidgets to 
omplete the binary tree. The labelling � of the leavesL is an arbitraryinje
tive fun
tion.We now des
ribe the partial results � and the distinguished bra
ket Æ. First,we arbitrarily assign the results of all the �rst-round games by labelling theparents of L. Then Æ is 
onstru
ted as follows: in ea
h of n widgets 
orrespondingto variables from �, it makes the 
orre
t predi
tions in exa
tly three of the four�rst-round games. The predi
ted winner of the other �rst-round game is alsopredi
ted to win in the se
ond round, but not in the third round. Finally, in theother se
ond-round game, the winner is 
hosen arbitrarily. See Figure 1 for thea
tual predi
tions we will use, with the partial results from � in
luded. Notethe spe
ial vertex vi, and that the distinguished bra
ket's predi
tion at vertex vi
annot possibly be 
orre
t, given �. Also note that for ea
h vi, bi is its \bottom"
hild (the lower of its two 
hildren in Figure 1), and ui is its \upper" 
hild.We now des
ribe how the 
ompeting bra
kets are 
onstru
ted. For ea
h 
lause
j in � involving distin
t variables xr; xs; xt we 
onstru
t a 
ompeting bra
ket�j , whi
h is identi
al to Æ, ex
ept in the widgets 
orresponding to variablesxr; xs; xt. In pla
e of the predi
tions shown in Figure 1, we use the predi
tionsfrom one of the two widgets pi
tured below. For ea
h non-negated variable inthe 
lause, we in
lude the predi
tions shown in Figure 2. For ea
h variable thatappears negated in the 
lause, we in
lude the predi
tions shown in Figure 3.Note that in ea
h widget, there is one predi
tion whi
h is not �xed. In two ofthese three widgets, �j makes the in
orre
t predi
tion, and in the other widget�j makes the 
orre
t predi
tion.
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Fig. 1. A widget from T , 
orresponding to the variable xi in �, with distinguished drawÆ and partial results �. The upper half of ea
h internal node u 
ontains Æ(u), while thelower half 
ontains �(u) (if it is de�ned). Note that Æ(vi) is in
orre
t, regardless of theout
ome of the game between B and C.
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Fig. 2. Partial results �, and predi
tions from �j for widget i, where 
lause 
j 
ontainsthe literal xi. Note that it is possible for �j(vi) to be 
orre
t. Also note that thepredi
tion for the game between G and H is not �xed.
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Fig. 3. Partial results �, and predi
tions from �j for widget i, where 
lause 
j 
ontainsthe literal xi. Note that it is possible for �j(vi) to be 
orre
t. Also note that thepredi
tion for the game between G and H is not �xed.



4 Corre
tness of the redu
tionWe are now ready to prove the following theorem.Theorem 1. � 2 3SAT () � (�) = (T; �; Æ; f�jgmj=1; �) 2Mar
h-Madness.Proof: We �rst make a few observations about the bra
kets. First, note thatfor all j, ��(Æ) = 2+ ��(�j). Next, note that for all j, and for all (ex
ept three)nodes v for whi
h � is unde�ned, Æ(v) = �j(v). The three ex
eptional nodes arepre
isely vr; vs; vt, where variables xr; xs; xt appear in 
lause j of �. Combiningthese observations, we see that for any � � �, ��(�j) > ��(Æ) ) �j(vr) =�(vr); �j(vs) = �(vs); �j(vt) = �(vt).): let x be a satisfying assignment of �. Then we 
onstru
t a tournamentresult � as follows: for ea
h i, if xi is true, let �(vi) = �(bi); if xi is false, let�(vi) = �(ui). Assign � arbitrarily (but so that it is a tournament result) at allother nodes.Be
ause every 
lause in � is satis�ed by x, ea
h 
lause 
j 
ontains sometrue literal, say either some variable xi or its negation. Then �j(vi) 6= �(vi) by
onstru
tion, so by the above observation, ��(Æ) � ��(�j) as desired.(: given a tournament out
ome � for whi
h Æ has the highest s
ore, 
onstru
ta satisfying assignment x for � as follows: if �(vi) = �(bi), let xi be true, otherwiselet xi be false. Be
ause the distinguished bra
ket Æ has the highest s
ore, ea
h
ompeting bra
ket �j has �j(vi) 6= �(vi) for some variable xi involved in 
lause
j . By 
onstru
tion, the 
orresponding literal (either xi or its negation) is truein 
j , so 
j is satis�ed, therefore x satis�es �. �Corollary 1. Mar
h-Madness is NP-
omplete.Proof: The running time of the redu
tion is polynomial in the size �: buildinga widget requires O(1) time, as does 
onne
ting two dis
onne
ted binary trees.At most 2n widgets are 
reated, and are 
onne
ted into one tree. Creating ea
hof the m + 1 draws require time linear in the size of tree, so the total runningtime of the redu
tion is O(mn) = poly(j�j).Finally,Mar
h-Madness 2 NP: given any instan
e (T; �; Æ; f�jg; �), a wit-ness of membership in Mar
h-Madness 
onsists of any tournament result� � � su
h that ��(Æ) � maxj=1;:::;m ��(�j). Che
king the validity of the witness
onsists of 
ounting the number of 
orre
t predi
tions from ea
h bra
ket, andverifying that the distinguished bra
ket has the highest s
ore. This again 
anbe done in time polynomial in the number of teams in the tournament and thenumber of bra
kets in the pool.By Theorem 1, 3SAT �P Mar
h-Madness, and the result follows. �Remark: typi
ally, a
tual betting pools o�er more points for 
orre
tly predi
t-ing games in later rounds of the tournament. For example, ea
h �rst-round gamemay be worth 1 point, ea
h se
ond-round game 2 points, and so on. Our resultsremain valid under these types of s
oring systems, as long as all games in thesame round are worth the same number of points, and the value of a se
ond-round game is at most a polynomial (in the number of bra
kets) fa
tor of the



value of a �rst-round game. If the value of a se
ond-round game is s, we onlyneed the distinguished bra
ket's s
ore to lead all other bra
kets' s
ores by be-tween 2s and 3s � 1 (in
lusive) after the �rst round. Therefore we 
an modifythe redu
tion by enlarging the size of the widgets so that ea
h 
lause's bra
ketmakes enough in
orre
t predi
tions in the �rst round.5 A
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