Generalized D-Forms Have No Spurious Creases
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Abstract

A convex surface that is flat everywhere but on finitely many smooth curves (or
seams) and points is a seam form. We show that the only creases through the flat
components of a seam form are either between vertices or tangent to the seams. As
corollaries we resolve open problems about certain special seam forms: the flat com-
ponents of a D-form have no creases at all, and the flat component of a pita-form has
at most one crease, between the seam’s endpoints.
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1 Introduction

Given any metric space S with the topology and local geometry required of the surface of
a convex three-dimensional body, there is exactly one convex body up to isometry whose
surface has the intrinsic geometry of S. This is the endpoint of a line of research pursued
in the middle of the last century by Alexandrov and Pogorelov [Ale50], and it implies a
strong correspondence between the geometry of a convex body and the intrinsic geometry
of its surface. On the other hand, the exact nature of this correspondence is not yet well
understood—which properties in the surface geometry imply what properties in the body
geometry, and vice versa.

For example, if S is a D-form, obtained by sewing together two smooth convex shapes
of the same perimeter, then even for this special case the most basic questions are open.
These forms were invented by an artist [Wil, [Sha09] and introduced into the literature in
[PWOI]. The latter study poses three problems: (1) when is the D-form the convex hull of
a space curve, (2) when are the two pieces free of creases, and (3) how can one compute the
D-form numerically from the two shapes. A later treatment [DOOQ7] suggests an informal
argument for Problem 1 (arguing that the D-form is always the convex hull of its seam) and
leaves Problems 2 and 3 open. The same book [DO07] introduces also a related special case
where S is obtained by sewing up a single smooth convex shape along its boundary in one
seam, calling these pita-forms and suggesting, based on paper experiments, that pita-forms
might never have creases.

We resolve Problems 1 and 2: both D-forms and pita-forms are always the convex hull
of their seams, and (excluding the seam) D-forms are always free of creases but a pita-form
may have one crease. Our results apply to a natural generalization of both D-forms and
pita-forms, the seam form, which roughly consists of intrinsically flat pieces joined along
finitely many seams. Because the original sources of the problem are stated informally,
we first introduce precise definitions of D-form, crease, etc., that we believe capture the
intuitive picture. Then we show the following theorems:

Theorem 1. Every three-dimensional convex body is the convex hull of the nonflat points
on its surface.

Corollary 2. Every seam form is the convex hull of its seams and vertices.

Theorem 3. In a flat component of a seam form, every crease lies on a line segment
composed of creases, and each endpoint of such a segment is either a strict vertex or a point
of tangency to a seam.

Corollary 4. The flat components of a D-form are without creases; in the flat component
of a pita-form, the only crease(s), if any, make up the line segment between the endpoints
of the seam.

Intuitively the line segment between a pita-form’s endpoints in Corollary [4] should be
thought of as one “crease”; it is a consequence of our definitions, below, that this segment
may be arbitrarily subdivided into several segments we call creases.

Problem 3, to efficiently compute the three-dimensional shape of a D-form or seam form
from its two-dimensional intrinsic geometry, has now been largely resolved. To make this
problem well posed, one needs a finite representation of the input geometry, which is most
naturally done by a piecewise-linear or polyhedral approximation. With considerable ef-
fort, the problem of reconstructing a three-dimensional convex polyhedron from its intrinsic



Figure 1: A D-form, constructed by sewing together two ellipses (at left). The solid line is
the seam, and the dotted lines are the false edges from projection into the page.

geometry can be reduced to the solution of a high-dimensional ordinary differential equa-
tion [BI06]. The numerical solution of this equation appears to be achievable efficiently in
practice, and is provably achievable within pseudopolynomial time [KPDQ9].

We introduce terminology in Section 2, prove Theorem [l and its Corollary [2] in Sec-
tion 3, and prove Theorem [3| and its Corollary [4] in Section 4. In Section 5 we describe
counterexamples that show the necessity of some of the hypotheses in our results.

2 Background and Notation

For us a surface is a metric 2-manifold embedded in R3. The surface is C* if the manifold
and its embedding are C*. The surface is piecewise-C* if it can be decomposed as a complex
of vertices, C* open edges, and C* open regions.

A good surface is a piecewise-C? surface. A good surface S therefore decomposes into a
union of C? surfaces S;, called pieces, C? edges v;, which we call semicreases, and vertices.
If S is itself C'' everywhere on a semicrease, we call it a proper semicrease; otherwise it is
a crease. (This conservative definition of crease, where some parts may be C! but not C?,
only broadens our characterization of creases in seam forms.) Note that this definition is not
intrinsic, because it relies on the decomposition of S into C? pieces; by describing a surface
by a different decomposition it is possible to add proper semicreases or to subdivide creases.
This reliance on a piecewise C? decomposition avoids irrelevant issues from real analysis.

A point on a surface is flat if it has a neighborhood isometric to a region in the plane.
A surface or part of a surface is called flat if all of its points are flat.

A surface S is convez if S C 9X for some bounded convex body X in R3. A normal to
a convex body X at a point x is a unit vector n with n -2 = sup,cyx n-z’. The relation
between points on the boundary of X and their normals is traditionally called the Gauss
map, though it need not be a map—one point may have many normals. We write G(z) for
the normals at z, and G(U) for all the normals to any point in U C X. Observe that G(x)
is always a convex subset of the sphere.

A consequence of Gauss’ celebrated Theorema Egregium [Gau02] is that a convex surface
U is flat just if G(U) has zero area. If G(x) has positive spherical area, then we call z a
strict verter. The C? condition prevents a strict vertex x from being on a semicrease or
piece, so for good surfaces, strict vertices are indeed vertices.

A seam form S is a good convex surface in which each piece S; is flat. It is simple to verify
that such a surface decomposes uniquely into maximal connected flat open subcomplexes,
which we call flat components, and some leftover semicreases and vertices, the connected



components of which we call seams.

A convex seam form is a seam form in which each flat component is isometric to a convex
plane region, and a conver smooth seam form is a convex seam form in which these regions
have smooth (C'*°) boundary. A convex smooth seam form with one flat component is called
a pita form, and with two flat components is called a D-form. See Figures [I] and

Given a convex body X and a point x € X, we say that a line ¢ traverses z if x € /¢
and some open neighborhood of x on ¢ is contained in X. An extreme point of X is a point
x € X not traversed by any line.

3 Convex Hull

In this section we prove Theorem |1} that every three-dimensional convex body is the convex
hull of the nonflat points on its surface.

From convex geometry we have the following characterization of the minimal set from
which a convex body can be recovered as the convex hull: we need only the extreme points.

Theorem 5 (Minkowski’s Theorem). Every convex body in R™ is the convex hull of its
extreme points.

The proof is a straightforward induction on the dimension of the body and can be found
as Corollary 1.4.5 in Schneider’s textbook [Sch93].

It remains to describe the extreme points of a seam form. To do so we begin with the
following proposition:

Proposition 6. If p is an extreme point of the convex body X, then for every open neigh-
borhood U of p in R™, some hyperplane has p strictly on one side and all of X \ U strictly
on the other.

Proof. This is Lemma 1.4.6 in [Sch93]. For completeness we give the proof.
Because p is an extreme point, it cannot by definition be the convex combination of any
two other points in X. Therefore it is not the convex combination aix1 + - - -+ apxy, with all

a; > 0, of any k other points in X, because otherwise we would have p = (1 — ag)( lf;k x1+

cee ff;i Zp—1) + arxy, and certainly the convex combination 12% T4+ ff;i Tp_1 18
a point in X. In other words, p lies outside the convex hull of X \ {p}, and consequently
outside the convex hull Y of X \ U.

Now Y is itself a convex body, and p a point outside it. By the Separating Hyperplane
Theorem, some hyperplane strictly separates them, and because X \ U C Y, it strictly

separates p and X \ U as required. O

Proposition 7. On the surface of a convex body, there are no flat extreme points.

Proof. Suppose some extreme point p of a convex body X was flat, with a neighborhood
S C 0X isometric to a plane region. Let U be an open neighborhood of p in X with
UNoX C S. Let the hyperplane H guaranteed by Proposition [f] separate X into convex
bodies C' and Y with p € C, and let D = C N 90X. Because C C U, we have D C S so that
D is flat.

Now consider the normals to X along the portion D of its surface. Let d be the distance
from p to H, and let r be the maximum distance from the projection of p onto H to any
point in H N X. Then any plane through p and making an angle at most § = tan=1(d/r)
to H fails to intersect H N X and therefore fails to intersect Y. Therefore the normals to



these planes, covering a spherical area of 27(1 —cos6) > 0, all are normals to X somewhere
on D. This gives G(D) a positive area, contradicting that D C S is flat. O

Theorem [I]is now immediate from Theorem [pland Proposition[7} and Corollary [2] follows.

4 Creases

In this section we prove Theorem |3 characterizing the possible creases of a seam form.

Proposition 8. Let v be a crease in a flat component of a seam form S. Then ~ lies on
a line segment [p, q] between endpoints p and q that lie on seams, and the whole segment is
composed of creases and vertices.

Proof. Let S; and S; be the open pieces bordered by v in the decomposition of the good
surface S, and let € «y be a point at which S is not C'. Then S; and S5 are C? surfaces, so
they have normals n; and ny at x, and because S is not C! at x, these normals are distinct.
Therefore G(z) contains at least two distinct vectors.

By Proposition [7},  must be traversed by some line ¢, so that £ NS = [p, g| for some p
and ¢. Necessarily ¢ is perpendicular to all of G(x), so for each y € [p,q] and each normal
ne€G(x),n-y=mn-x=-sup,cyn-z’ and n is a normal of y. Therefore each G(y) contains
G(z), and so like G(z) has at least two distinct vectors.

The multiple normals in G(z) and hence in each G(y) determine a unique perpendicular
line, so that no other line may traverse any point of [p, g]. In particular no line traverses p
or g, so by Proposition [7] these points are not flat and must lie on seams or vertices.

At the same time, because a C'! surface has only one normal at each point, no point of
[p, q] can be on a C? piece or a semicrease. The whole segment is therefore made up of creases
and (nonstrict) vertices. Because a crease is defined from a cell-complex decomposition, only
one crease runs through a given point, so because 7 runs through x it must be one of the
creases making up [p, q|. O

In order to analyze the Gauss map at seam and vertex points, we introduce some addi-
tional notation. Let x € S be incident to a 1- or 2-cell C, a (semi)crease or piece. Then we
define

Geo(x) = m closure(G(C' NU))

xeUopen

as the Gauss map at x on C. For comparison, observe that G(2) = (,cpopen closure(G(U))
because the relation G is closed, and in particular G¢(z) C G(x).

Proof of Theorem[3 Let  be a crease in a flat component of a seam form S. By Proposi-
tion |8} v lies on a segment [p, q] composed of creases and vertices and whose endpoints lie
on seams. It remains to prove that if an endpoint, say p, lies on a seam and is not a strict
vertex, then the seam is tangent to [p, g].

Let G (p) be the great circular arc mn, and let the pieces of S bordering v be S; and
S2. By continuity, Gg, (p) > m and Gg,(p) > n (possibly after exchanging the names m,n),
and because m # n the Gauss map at p on at least one of the cells C surrounding p from S
to Sy apart from « must be a positive-length spherical curve in order to complete the path
from m to n. If p is not a strict vertex, then G(p) is a convex spherical shape of zero area,
so it is a great circular arc, and G¢(p) € G(p) is also a great circular arc. If C' is a piece,
then G¢(p) is either a singleton or a curve not lying on a great circle, because a great-circle



Gauss map makes parallel rule lines that cannot converge at p. Therefore C' is a semicrease.
Because G(C') must be more than a single point, C' is a crease, and to make the Gauss map
lie within the arc G(p), C must be tangent to [p,q| as required. Finally, because p is the
endpoint of the intersection of the line pg with S, the crease C' must not be a line segment,
so by Proposition [§] it is actually part of the seam and the proof is complete. O

Of course, in a convex plane region, no line segment in the interior is tangent to the
boundary, from which follows a corollary about convex seam forms.

Corollary 9. In a convex seam form, every crease in a flat component is on a line segment
between two strict vertices.

Finally, in a convex smooth seam form such as a pita-form or a D-form, the requirement
of smoothness sharply limits the possible configurations. By (local) convexity, no vertex can
be incident to three or more semicreases as part of its seam, and a vertex through which a
seam passes cannot be a strict vertex. Consequently a pita-form must have a single path
for its seam and just two strict vertices located at the seam’s endpoints, and a D-form must
have a single cycle for its seam and no strict vertices. Corollary [4] follows.

5 Counterexamples

We have required the flat components of a D-form to be convex. We could relax this
requirement, requiring instead only that the metric space resulting from joining the two
components be locally convex, and the Alexandrov-Pogorelov theorem would still guarantee
a unique convex embedding in three-dimensional space. Of course Corollary [2] would still
guarantee that the resulting body would be the convex hull of its seam, but it turns out that
Corollary [d] whose conditions would no longer be satisfied, really would fail in its conclusion:
one can construct a “D-form” under this relaxed definition which contains creases in its flat
components. Indeed it is not hard to construct such an example, if one keeps in mind
Theorem [3] that the offending crease must be tangent to a seam; see Figure [2l It would be
interesting to determine under exactly what conditions a seam form whose flat components
do not correspond to convex plane regions has a crease.

C )

Figure 2: A “D-form” with a relaxed convexity condition. The solid dark line is the seam,
the dotted lines are false edges from projection onto the page, and the solid light lines are
the creases through a flat component. Actual D-forms have no such creases.

For pita-forms, we have concluded in Corollary [4 that a pita-form may have at most one
crease. Indeed this is tight, and it is easy to construct an example pita-form with a crease;



see Figure [3| This possibility of creases therefore represents a real difference from D-forms.
It represents also a contrast from the appearance of the natural paper experiments, which
led the authors first introducting pita-forms ([DO07]) to suggest that pita-forms might never
have creases. In fact, by applying Corollary [2] it is not difficult to see that the pita-form
depicted in Figure 23.14 of [DO07] must have a crease. In our reproduction, the physical
paper indeed does not crease, and the seam has gaps at the endpoints that in retrospect
explain the divergence between this experiment’s behavior and the mathematical pita-form.

Figure 3: A typical pita-form. A crease runs between the endpoints of the seam.

On the other hand, we do not know of a construction for a pita-form without a crease.
It appears to be an open problem to find such a construction, or to prove that in every
pita-form the line segment between the endpoints is in fact a crease.

For some theorems of the same flavor as our results here, one might hope to obtain
proofs by showing that the desired properties hold of convex polyhedra, which are relatively
concrete and amenable to reasoning, and then that they carry over to general convex bodies
as limits of polyhedra. Indeed, this is the approach taken in [DO07] to argue for Corollary
for the case of D-forms. Unfortunately this approach does not hold as widely as one might
like. In particular, Corollary [J] cannot be proven by a limiting argument of the obvious form,
even when restricted to D-forms. When each flat component of the D-form is approximated
by a sequence of polygons, it is possible for the dihedral angles inside the components to
approach positive limits, even when the angles of the polygonal approximations are required
to converge to zero. For example, in the D-form obtained from two circular disks (which
is just the double cover of a disk), the components may be approximated by regular n-
gons for increasing n, and the resulting approximations to the D-form may be antiprisms of
two smaller n-gons and 2n triangles. In this approximation sequence, the dihedral angles
between each n-gon and its n neighboring triangles approach 7/3, not zero, even though
they lie inside the flat components. For this and other reasons we have chosen direct proofs
that attack the general case of convex bodies.
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