The HMAC construction:
A decade later

Ran Canetti
IBM Research

What is HMAC?

HMAC: A Message Authentication Code based on
Cryptographic Hash functions
[Bellare-C-Krawczyk96].

Developed for the IPSec standard of the Internet
Engineering Task Force (IETF).

Currently:

- iIncorporated In IPSec, SSL/TLS, SSH, Kerberos,
SHTTP, HTTPS, SRTP, MSEC, ...

- ANSI and NIST standards
- Used daily by all of us.

Why I1s HMAC interesting?

“Theoretical” security analysis impacts the
security of real systems.

Demonstrates the importance of modelling and
abstraction in practical cryptography.

The recent attacks on hash functions highlight
the properties of the HMAC design and analysis.

Use the HMAC lesson to propose requirements
for the next cryptographic hash function.

Organization

Authentication, MACs, Hash-based MACs
HMAC construction and analysis
Other uses of HMAC:

* Pseudo-Random Functions

e Extractors

What properties do we want from a
“cryptographic hash function”?

Authentication

N ~—B

The goal: Any tampering with messages should be detected.
“If B accepts message m from A then A has sent m to B.”

« One of the most basic cryptographic tasks

« The basis for any security-conscious interaction over an open
network

Elements of authentication

The structure of typical cryptographic solutions:

 |nitial entity authentication:

The parties perform an initial exchange, bootstrapping
from initial trusted information on each other. The result
IS a secret key that binds the parties to each other.
Message authentication:

The parties use the key to authenticate exchanged
messages via message authentication codes.

Message Authentication Codes

t=F.(m) t'=? F.(m')

« A and B obtain a common secret key K
« A and B agree on a keyed function F
« A sends t=F.(m) together with m

« B gets (m',t'") and accepts m' if t'=F (m’).

Message Authentication Codes:
A definition

m',F,(m’) m_,
) AdV < FK

F(m)

The MAC game:

« Key K chosen at random

« An attacker can adaptively ask queries m and get F (m).

« Fis a good MAC function if the attacker is unable to “predict’ F,
l.e. generate (m',F,(m’')) for an unqueried m'.

Definition can be quantified, counting:

- Number and length of queries

- Local computation

- Probability of success.

Message Authentication Codes:
A definition

m',F,(m’) m_,
) Adv < FK

F(m)

The MAC game:

« Key K chosen at random

« An attacker can adaptively ask queries m and get F (m).

« Fis agood MAC if the attacker is unable to “predict” F, i.e.
generate (m',F,(m’')) for an un-queried m'.

Definition can be quantified, counting:

- Number and length of queries

- Local computation

- Probability of success.

Note: this Is a weaker requirement than pseudorandom functions.

IPSec

The IP Security effort (1993-)

« An initiative of the Internet Engineering Task
Force (IETF)

« Goal: provide a ubiquitous mechanism for
securing internet traffic:

— Common to all Internet traffic

— Sits in the OS kernel, thus always available
(but also hard to deploy and modify)

— Can be easily used by network components
(routers, NAT boxes, firewalls, etc.)

A central challenge in 1995:
Find a good Message Authentication Code

Requirements:

« Very fast on a variety of platforms

« Ubiquitously available

* Not susceptible to US export controls
« Secure...

MACs for IPSec: Available options

* DES in CBC-MAC mode:
— Relatively slow in software
— Only 64-bit MACs
— Export controls limit to 40-bit keys

« MACs based on “cryptographic hash functions (CHF)”
such as MD5, SHA1, RIPEMD.

— CHFs are anyway incorporated in most libraries
— Very fast in software
— Not susceptible to export controls
— “Nice” security properties
The choice was clear. But, how to do it securely?

Cryptographic Hash Functions

Basics: The common structure of CHFs

* [terated applications of a basic element, the “compression
function” h, using the Merkle-Damgard (“cascade”) structure.

e |nitialize via a fixed s-bit value V.

) n>1
Hk(X1...Xn)={ %,)X
h,(x,)

H(x)=H,,(X)

n=1

b=512
MD5: s=128
SHA1,RIPEMD: s=160

b bits
s bits h itzits
X X,
K. i K. l K,

Security properties of CHFs

Main design goal was collision resistance:

Infeasible to find x,y with H(X)=H(y).

Theorem [Damgard89]:
If h, is collision resistant on b-bit inputs, then

H, is collision resistant for any input length.

But:
* Used in many situations that require different,
“ad-hoc” security properties.

* Treated like “magic functions”. Output is assumed to
be random and completely uncorrelated with the input.

MACs from CHFs

Main question:
How to incorporate a secret key in a public function?

MACs from CHFs

Main question:
How to incorporate a secret key in a public function?

e Proposal 1- Prepend the key: Prep,(m) = H(k|m)
- If H Is a “random function” then Prep is a secure MAC.
- But, Prep is susceptible to “extension attacks”:
let |m,|=|m,|=b. Then obtain t=Prep,(m,), and
compute Prep,(m,|m,)=h.(m,).
- Still, the proposal was quite popular.

(“Packet headers always include the length,
thus the attack is not practical.”)

MACs from CHFs

* Proposal 2 - Append the key:
App, (m) = H(mlk)

- Prevents extension attacks.
- if his a “random function” then App is secure MAC.
- But, strongly depends on collisions resistance of H.
(k enters the computation only at the very end.)
Can we do better?

MACs from CHFs

* Proposal 3 - Prepend and append the key:
Env, (m)=H(k|m|k) [RFC 1828, Aug95]

-To align or not to align? [Preneel-VanOorschot95]
-What are the assumptions on H/h?

* Proposal 4. Start with Env, and add key-related
operations to h [Preneel-VanOorschot9o5]

None of the above had sound security analysis...

HMAC

Towards HMAC: The NMAC construction

NMAC,, .(m)= H,,(H(m))

X4 X5 X

l l lj |

* |dea 1: Incorporate the key via the IV.
Better for modeling and analysis. Follows the design of
the underlying CHF.

* |dea 2: Use two independent keys. Indeed, each key
has a different role in the analysis.

Performance of NMAC

* |nternal application of H: Same as plain hashing of the
message

e Extrnal application of H: Single run of h.

The overhead of the external application is negligible for
long messages (packets), and tolerable even for small
packets.

Security of NMAC (l)

Approach: reduce to weak properties of h.

Assume an attacker A that breaks NMAC. That is:
e A asks sees NMAC,, ,(m,), NMAC,, ,,(m,),...
for adaptively chosen m,,m,,... .

e A generates m',NMAC,, ,(m') for a new m'.
Then:

e If H,(m")=H,_(m) for some i, then A has found a
collision in H,,, with an unknown k..

o Else, A managed to “predict” h,, without either
knowing k, nor directly seeing the input.

Weak collision resistance

* His weak collision resistant (WCR) if, given oracle
access to H, for a random Kk, it is infeasible to find x,y

such that H,(x)=H,(y).

By itself, equivalent to finding collisions with a known random key.
(First get k'=H,(m) for a random m, and then find a collision in H_().)

e His very WCR Iif, given oracle access to H,,(H,,()) for a
random k,,k,, it is infeasible to find x,y such that

H,o(X)=H,,(y).

Security of NMAC (ll)

NMAC is a secure MAC as long as:
e h, is a secure MAC on b-bit messages.

e H, is very weak collision resistant.

Note: Analysis is quantitatively tight.
* Noincrease in # queries or running time,

* Adversarial success probability is at most the
sum of the assumed success probabilities.

Downsides of NMAC:

* Need to change the IV, thus change
existing libraries that include CHFs.

* Key is long (256 or 320 bits).

HMAC gets around these, at the price of an
additional mild assumption on h.

The HMAC construction

HMAC, (m)=H(k@ opad | H(k@ipad |m))

lk|=s (128 or 160)

opad = 0x36 repeated to make b bits
Ipad = 0x5c repeated to make b bits
® Is bitwise exclusive or

Note:

-key iIs short

-keying is only via the input, so no change in existing code.
-Performance: 2 additional applications of h.

Security of HMAC

By reduction to the security of NMAC.
Recall: HMAC, (m)=H(k®opad | H(k@ipad |m))

NMAC,, ,(m)= H,,(H,,(m))

Notice: HMAC,(m)=NMAC,, ,,(m),
where k ,=H(k®opad), k ,=H(k®ipad).

Thus, assuming that:
G(k)=H(ke®opad),H(k@ipad)

IS a pseudorandom generator from s bits to 2s bits,
we have that HMAC is a MAC function if NMAC is.

Looking back: HMAC as a tradeoft

HMAC is a tradeoff between “theoretical elegance” and
practical needs:
* The underlying assumptions on the CHF are not the
most “elegant” possible.
* Construction is not the most efficient possible.

But:

* Provides convincing and sound arguments that breaking
HMAC would mean a complete break of the CHF.

* Design is simple and does not require change of existing
code.

Other uses of HMAC

Once HMAC became readily available, people started to use it
In different ways... e.g.:

* Pseudorandom function (PRF):
for “key expansion”. generate multiple PR keys from
a single short key. In IPSec, TLS, SSH, KERBEROS...

e “Collision-resistant PRF”: In TESLA (stream authentication
for the MSEC secure multicast standard).

* “Computational randomness extractor”. For deriving pseudo-
random keys from somewhat random keying material.

Pseudo-random functions

PRFs are keyed functions that behave like random functions as
long as the key is random and secret.

More formally, PRFs are defined via a game:
« Oracle O is fixed to either F, for a random key K, or
a random function R with the same domain and range.
« An attacker can adaptively ask queries m and get O(m).
« Fis a good PRF if the attacker is unable to tell whether it
interacts with R or with F,.

R/F>? m

‘ Adv. | R/F,

O(m)

HMAC as a PRF

Fact 1: If the compression function h, is a PRF on b-bit inputs
then the cascade H, iIs a PRF on variable size inputs,
as long as no query is a prefix of another [Bellare-C-Krawczyk97].

Fact 2: If h.is a PRF on b-bit inputs and H, is Almost Universal
(AU) on v-size inputs, then NMAC, is a PRF on v-size inputs
[Bellare05]. (H, is AU if for any x,y Prob.(H.(x)=H.(y)) is negl.)

Fact 3: If h, is a PRF on b-bit inputs then NMAC, is AU [Bellare05].

- If h, is a PRF on b-bit inputs then NMAC, is a PRF on v-size inputs.

- If in addition G(k)=H(k®opad),H(k®ipad) is a PRG then HMAC, is a
PRF on v-size inputs.

The extraction problem

Some key exchange protocols generate
“defective keys”:

 Have much “computational entropy”, but
* Are not pseudorandom.

Goal: Extract a pseudorandom key.

Main example: Diffie-Hellman exchanges

Public: Algebraic group G, generator g

A

Choose x in [1..|G]]

output (g¥)* = gv

B

Choose y in [1..|G]]

Output (g*)” = g*

Properties of the generated key (gv)

The Decisional Diffie-Hellman (DDH) assumption implies:

(g, 25 8% 8Y) ~ (28,2, ¢)
But:

e DDH is a strong assumption.

* Even under DDH, g¥ is pseudorandom only in the group G, which
is often embedded in a much larger group (eg, Z,)

* Even in best case, when |G|=q, p=2q+1, we only have that
g% is pseudorandom in a small subset of {0,1 }*.

* When the exchange is not authenticated by external mechanisms
(e.g., in the MQV or HMQV protocols) the guarantees are even
weaker.

Common practice

Hash using a CHF and hope for the best...

If the CHF is modeled as a random oracle then
everything is ok.

But, can we do better?

Randomness extractors

Input:

* A “defective random source”, namely a value drawn from a
distribution with substantial entropy,

* A short truly random value.

Output:

* A value that is statistically close to random.

A computational variant [Dodis-Gennaro-Hastad-Krawczyk-Rabin05]:

Input:

* A (secret) value drawn from a distribution with substantial
“computational entropy”,

* A (public) truly random value.

Output:

* A (secret) pseudorandom value

HMAC as an extractor

Assume the compression function h, is a c-extractor from b-bit
inputs to s-bit outputs, with an s-bit public random input.
b bits

l

s bits s bits
—>

h

Then:
e The cascade H, is a c-extractor from v-length input to s-bit

outputs, as long as each input block has sufficient c-entropy
given all subsequent blocks [DGHKRO05,CGS8S].

* NMAC and HMAC behave similarly, when assuming in
addition that h is a PRF from s-bits to s-bits with b-bit key.

Using HMAC as an extractor

Applicable when the parties have some trusted public
randomness (e.g., the protocol involves exchanging
public authenticated random nonces).

Here do: k = HMAC (g»)

where r is the public randomness (eg, concatenation of
nonces).

K is guaranteed to be pseudorandom as long as gv has
enough c-entropy.

* Indeed, HMAC is used this way in IPSec's IKE.

Open question:

What to do when there is no trusted public
randomness?

Here the best we know today iIs to model the
CHF as a random oracle.

Can we do better?

HMAC as a Random Oracle

HMAC was designed to get away from unnecessary
random oracle modeling.

Still, it turns out that the HMAC/NMAC constructions
can be used to extend Random Oracles
[Coron-Dodis-Malinaud-Punya05].

* If his a random oracle on b-bit inputs, then:

* The cascade H of h is a random oracle on
variable-length inputs, as long as queries are
prefix-free.

* The HMAC/NMAC constructions are Random
Oracles on variable-length inputs.

Recent attacks on CHFs

The [Wang-Yu-Yin05] collision attacks againt
MD5 and SHA1 imply:

* Can find collisions in current functions in time 206V

* Same approach seems to work for a random,
public IV (but needs a “human in the loop” for
each new V).

Implications on HMAC:

* Another reminder that H is not a Random Oracle
(and not even h).

 Weak collision resistance (with secret IV) is
somewhat affected, due to the extension attack.

e Very weak collision resistance does not seem to be
affected.

e Neither the PRF nor the MAC assumptions on h
seem to be affected.

* The c-extraction assumption on h seems unaffected.

In contrast, other suggestions of hash-based MACs are
seriously affected.

Lessons for a new CHF:

Lessons for a new CHF:

* Make the I'V part of the interface.

(OK to fix a single IV for interoperability, but explicitly allow
applications to choose their own IV.)

Lessons for a new CHF:

Make the IV part of the interface.

(OK to fix a single IV for interoperability, but explicitly allow
applications to choose their own IV.)
The compression function should be designed to be:

* A PRF when keyed via the chaining variable
* A PRF when keyed via the input

Lessons for a new CHF:

Make the IV part of the interface.

(OK to fix a single IV for interoperability, but explicitly allow
applications to choose their own IV.)
The compression function should be designed to be:

* A PRF when keyed via the chaining variable
* A PRF when keyed via the input

The compression function should be a good extractor

Lessons for a new CHF:

Make the IV part of the interface.

(OK to fix a single IV for interoperability, but explicitly allow
applications to choose their own IV.)
The compression function should be designed to be:

* A PRF when keyed via the chaining variable
* A PRF when keyed via the input

The compression function should be a good extractor
The cascade design is a good one: preserves important properties

Lessons for a new CHF:

Make the IV part of the interface.

(OK to fix a single IV for interoperability, but explicitly allow
applications to choose their own IV.)
The compression function should be designed to be:

* A PRF when keyed via the chaining variable
* A PRF when keyed via the input

The compression function should be a good extractor
The cascade design is a good one: preserves important properties

Make the output length parameterizable:
* For collision resistance larger ouput is easier

* For PRF, extractor smaller output is easier

Lessons for a new CHF:

* Make the I'V part of the interface.

(OK to fix a single IV for interoperability, but explicitly allow
applications to choose their own IV.)
* The compression function should be designed to be:

* A PRF when keyed via the chaining variable
* A PRF when keyed via the input

* The compression function should be a good extractor
* The cascade design is a good one: preserves important properties

* Make the output length parameterizable:
* For collision resistance larger ouput is easier

* For PRF, extractor smaller output is easier

Perhaps we want different functions for different applications?

Summary: Why is HMAC interesting?

An example where “theoretical” security analysis
has impact on acceptability and practical security.

Demonstrates the importance of modeling and
abstraction in practical cryptography: Different
models of the same construction bring different
results, all useful.

The recent attacks on hash functions highlight
the properties of the HMAC design and analysis.

Can use the HMAC lesson to propose
requirements for the next cryptographic hash
function.

Basic structure of the IPSec protocol:

« Key exchange: Two peers obtain a common
secret key In an authenticated way.
(Application layer protocol)

« Data protection: Encryption and authentication.
(IP layer protocol: Each packet encoded and
decoded individually.)

« Per-packet transforms:

— Authentication header (AH): Authentication only
— ESP: Authentication and/or encryption

Seems simple enough. But turns out to be far from that...

IP: the common denominator of the
Internet

Telnet HTTP DNS | [INTP audio/video

/L

TCP UDP

Ethernet Token Ring

HMAC as a standard

After much discussion and debate, HMAC was accepted as the
mandatory-to-implement MAC function for IPSec (RFC 2104).

* Rare example of a security standard where “theoretical”
modeling and analysis has helped acceptance as standard.

Other IETF standards that incorporate HMAC.:
TLS, SHTTP, SSH, HTTPS, KERBEROS, SRTP,...

NIST standard: FIPS 198
ANSI standard: X9.71

Incorporated in practically any browser and OS today.

