Universally Composable Security
With Global Setup

Ran Canetti Yevgeniy Dodis Rafael Pass Shabsi Walfish
IBM ANYU Cornell ANYU

The Trusted Party paradigm [GMwW87]

How to decide whether a protocol “securely realizes”
a given task?

* Devise an “ideal protocol” for the task:
— All parties hand their inputs to a “Trusted Party” T
- T locally computes outputs and hands to parties.

* A protocol “securely realizes” the task if running the
protocol “looks like” running the ideal protocol.

But, How to formalize?

The simulation approach

[GMR85,B91,C95,...]
What does

“running protocol P looks like running the ideal protocol”
mean??

e For any adversary A that interacts with P

* There exists an adversary S that interacts with T

e Such that no “external distinguisher” can tell an
interaction with (P,A) from an interaction with (T,S).

The appeal

A priori, the approach looks great:
e General
* Intuitive

* “Inherently composable”

Do existing formulations deliver?

...It seems so:
 Many formulations [GL90,MR91,B91,DM00,PW00,C95,00,01...]
e Can capture practically any task
* Composabillity:
— Non-concurrent [MR91,C00]
— Concurrent [DM00,PW00,C01]

Trusted Set-up

Trusted set-up is common in cryptography:
* PKI for authentication and encryption
e CRS for protocols

In fact, some type of set-up is often essential:
* Authentication

* NIZK

 UC commitment, ZK, general computation...

How do existing definitions fare with trusted set-up?

A “warning sign”:

Transferability of NIZK in the CF

 Reminder: “Ildeal Zero-Knowledge”

(for relation R(x,w))

‘Prover

%&

Tzk

Verifier

/C', Rixw)

'S model

A “warning sign”:

Transferability of NIZK in the CF

'S model

 Reminder: Non-Interactive Zero-Knowledge

?Qw/

‘Prover

CRS

p
—

N

Verifier

A “warning sign”:
Transferability of NIZK in the CRS model

e “Ideal ZK” Is not “transferable”:

The verifier cannot later “convince” a third party in the
verity of the statement.
 In the standard model, ZK protocols have the same
property, as expected.

e But, NIZK protocols in the CRS model are easily
transferable, assuming the CRS is public...

A “warning sign”:
Transferability of NIZK in the CRS model

e “Ideal ZK” Is not “transferable”:

The verifier cannot later “convince” a third party in the
verity of the statement.
 In the standard model, ZK protocols have the same
property (as expected).

e But, NIZK protocols in the CRS model are easily
transferable, assuming the CRS is public...

So, what's going on?

An approach for a solution
[Jakobson-Sako-Impagliazzo96]

* Modify the se-tup: The verifier will have a public key
PKv, and a corresponding secret key SKv.

* Modify the protocol. The prover will prove: “Either the
statement is correct or | know the secret key that
corresponds to Pkv”.

Now, the verifier can no longer use the proof to
convince third parties in the verity of the statement.

...or so it seems....

Lingering doubts

* |s the proposed solution good enough?
 How to capture this property?

* Are there other such “loopholes” in the definitional
approach, in the presence of set-up?

 Where did the modeling fail?

What about UC security?

Perhaps if we use stronger formulations of the TP
paradigm we'll be ok? How about UC security?

* Nope... the same attack works even for UC-NIZK.
* There are also other examples:

The single-value UC-commitment protocol in
[C-Fischlin01] becomes completely malleable when
two instances use the same CRS.

Some work-arounds and non-solutions

* Move to a relaxed notion that does not require set-up
[Prabhakaran-SahaiO4, Barak-Sahai05,....]

But the security guarantees are inherently weaker...

Some work-arounds and non-solutions

* Move to a relaxed notion that does not require set-up
[Prabhakaran-SahaiO4, Barak-Sahai05]

But the security guarantees are inherently weaker...

e Use “Universal Composition with Joint State (JUC)
[C-Rabin03]. But JUC only guarantees security wrt specially
designed protocols... in particular the same attack works.

Some work-arounds and non-solutions

* Move to a relaxed notion that does not require set-up
[Prabhakaran-SahaiO4, Barak-Sahai05,....]

But the security guarantees are inherently weaker...

e Use “Universal Composition with Joint State (JUC)
[C-Rabin03]. But JUC only guarantees security wrt specially
designed protocols... in particular the same attack works.

* Move to a different set-up: “PKI with knowledge”
[Barak-C-Neilsen-Pass04]. The protocols are UC and seem
“non-transferrable” (akin to [JSI96]).

But, again, how to capture???

Our Contribution

* A new notion, Generalized UC (GUC) security, that:
~ Is preserved under universal composition
~ Guarantees security even with global setup
— In particular, guarantees non-transferability

A construction for realizing any functionality
in a GUC-secure way, given reasonable (“minimal”)
setup.

Results with a similar flavor in [Hofeinz,Muller-Quade,Unruh06]

UC security:

Protocol execution:

Ideal process:

A
v
S|

P 2, T, 2
o) -
\ n
?3 T"
Protocol TTUC-realizes F if:
For any adversary A
’(].‘

There exists an adversary S
Such that no environment E can tell
whether it interacts with:

- A run of Ttwith A

- Anideal runwith Fand S

The UC model postulates a restricted
environment:

 The environment can interact with a single protocol
instance only.

* No subroutines of the parties running the protocol
can be directly accessed.

Pro: Greatly simplifies the model and analysis.

Con: The UC theorem holds only for “subroutine
respecting” protocols.

In particular, cannot protocols that “share subroutines”
with other protocols.

UC security with setup:

Ideal vrocess: Protocol execution:

N Z

Note: in the ideal process the set-up is simulated by S.

This models a set-up that is available only to the protocol
execution, and is not available to other protocols.

How to extend the model to capture
shared subroutines?

Natural extension:

e Allow the environment to interact with any number
and type of protocols, even when testing security of
a single protocol.

* Allow protocols and subroutines to interact with
each other arbitrarily.

e Otherwise, definition remains the same.

We call the resulting notion Generalized UC security.

GUC security
with public setup:

Protocol execution:

Ideal process:

‘»(—’sp Q = | N
om0 TR e O

\\\\ , \\\\///

A 75

D

i
l

Note: The set-up exists even in the ideal model,
and the environment has direct access to it.

In particular, the simulator has to deal with an
existing set-up.

A simplified variant

* Allow the environment to interact with only a single
other entity other than the protocol instance.

* Allow that entity to interact with the protocol.

We call the resulting notion
Externalized UC (EUC) security.

EUC security
with public setup:

Ideal vrocess: Protocol execution:

T 7 4//

Also here, the set-up exists even in the ideal model,
and the environment has direct access to it.

Also here, the simulator has to deal with an
existing set-up.

Relating the notions:

Def: A protocol P is [F-]subroutine respecting if no
subroutine of a party in P takes I/O with any
non-subroutine of P [other than a single instance of FJ.

Thms:

* For F-subroutine respecting protocols, F-EUC-security is
equivalent to GUC-secuirity.

* For subroutine-respecting protocols, GUC security is
equivalent to UC secuirity.

Composabillity:

If T GUC-emulates ¢ then protocol P™
GUC-emulates protocol P?, for any P

The CRS model

Recall the CRS functionality (for distribution D):
* Choose a string S from D, send S to the adversary.

 Whenever a party asks, reply with S.

UC interpretation: Only parties in the invoking protocol
instance can get S.

GUC interpretation: Any party can get S.

EUC interpretation: Even the environment can get S.

An impossibility result

Thm: There do not exist two-party protocols that
GUC-realize Fcom in the GUC-CRS model.

Can be extended:
e Other primitives (ZK, OT, [CKLO3] functions,...)

e Any set-up that “only gives public information”

Reflections

 Good news: The notion does seem to be capturing
something good, since we know that protocols in the
CRS model are “inherently bad”...

 Bad news: How can we hope to realize, say, Fcom,
with any reasonable set-up?

(Existing proofs seem to hinge on the simulator's
ability to “rig” the set-up...)

We show:

Can regain general realizability with the following set-ups:
Key registration:

 When a party registers, (PK,SK) are chosen.

 Anyone can obtain the PK of any registered party.

e Corrupted parties can get their SKs.

(As In [BCNPO04], but here it's the the same global set-up for
all protocols)

We show:

Can regain general realizability with the following set-ups:
Key registration:

 When a party registers, (PK,SK) are chosen.

 Anyone can obtain the PK of any registered party.

e Corrupted parties can get their SKs.

(As In [BCNPO04], but here it's the the same global set-up for
all protocols)

Augmented CRS (ACRS):
* A random string S is chosen and made available to all

e Corrupted parties can obtain a “personalized secret
key” that's derived from S and their identities.

More reflections

 How to interpret the provision that only corrupted
parties can obtain secret keys?

— Protocol instructions cannot use the secret keys

— Parties cannot trust other parties to not have
their secret key.

e Minimality of ACRS:

- The interface for honest parties is the same as
plain CRS.

— The impossibility is circumvented by giving
secret information only to corrupted parties.

Yet more reflections

e GUC security with these set-ups leaves very little leeway to
the simulator:

— Cannot affect the set-up information of uncorrupted parties

- Only learns the secrets of corrupted parties when the
environment learns them

— Cannot rewind the environment
— Can only “fake” the coin-tosses of the uncorrupted parties.

e Seems “almost” as good as simulation in the plain model...

Main theorem

Assuming dense cryptosystems, there exists an
ACRS-hybrid protocol for GUC-realizing any well-
formed functionality, even for adaptive corruptions
with no erasures, as long as the corruptions are
PID-wise.

Def: Corruptions are PID-wise if all parties in the
system, in all protocol instances, that have the
same “party identity (PID)” must be corrupted
together.

The construction

* Enough to show how to GUC-realize Fcom.

Given Fcom, can use the [C-Lindell-Ostrovsky-Sahai]
construction (with the [Pass] transformation to 1:M ZK).

* For non-adaptive corruptions and key registration
set-up, the [BCNP] construction works.

e To deal with adaptive corruptions we use a special
coin-tossing protocol that allows choosing an
appropriate “CRS” per commitment.

 To make do with ACRS, we make use an
“Identity-based trapdoor commitment scheme”.

Further research

 How to model standard “global PKI” for
authentication?

- How to capture “deniable authentication”?

- How to capture standard PKI-based protocols,
assuming global PK? (Authentication, Key
Exchange, etc...)

e Can we find other set-up assumptions that would be
be more readily implemented in reality and still allow
for general UC feasibility? (e.g., the [HQU] set-up...)

