
On Symbolic Analysis of Cryptographic Protocols

by

Akshay Patil

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2005

c© Akshay Patil, MMV. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly

paper and electronic copies of this thesis document in whole or in part.

Author .

Department of Electrical Engineering and Computer Science

May 19, 2005

Certified by. .

Ronald L. Rivest

Viterbi Professor of Computer Science

Thesis Supervisor

Certified by. .

Ran Canetti

Visiting Scientist

Thesis Supervisor

Accepted by .

Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

On Symbolic Analysis of Cryptographic Protocols

by

Akshay Patil

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2005, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

The universally composable symbolic analysis (UCSA) framework layers Dolev-Yao style
symbolic analysis on top of the universally composable (UC) secure framework to construct
computationally sound proofs of cryptographic protocol security. The original proposal
of the UCSA framework by Canetti and Herzog (2004) focused on protocols that only use
public key encryption to achieve 2-party mutual authentication or key exchange. This thesis
expands the framework to include protocols that use digital signatures as well.

In the process of expanding the framework, we identify a flaw in the framework’s use of
UC ideal functionality Fpke. We also identify issues that arise when combining Fpke with
the current formulation of ideal signature functionality Fsig. Motivated by these discoveries,
we redefine the Fpke and Fsig functionalities appropriately.

Thesis Supervisor: Ronald L. Rivest
Title: Viterbi Professor of Computer Science

Thesis Supervisor: Ran Canetti
Title: Visiting Scientist

3

4

Acknowledgments

My heartfelt thanks to my advisor Ron Rivest for his guidance and confidence in me.

Working with him has been a constant inspiration to achieve my very best.

To Ran Canetti for always answering my questions, even though he knows I’m lying

when I say they’ll only take a moment. His attention to detail and willingness to listen

have been life-saving parachutes on the many occasions I’ve blindly charged forward in my

research.

To Jonathan Herzog for first introducing me to the UCSA framework. I would still

be utterly mystified by formal analysis if not for his ability to communicate clearly and

concisely.

To Be Blackburn, Maria Sensale, and Paula Mickevich for mothering me while I’ve been

3000 miles away from home.

To all the friends I’ve made during my years at MIT; their companionship has made my

time here truly enjoyable.

To the NSF and MIT for making this research possible – I was supported by NSF grant

CCR-032677 and the views expressed in this thesis are mine, not those of the NSF or MIT.

And to my family, whose love and support make everything possible.

5

6

Contents

1 Introduction 11

2 Preliminaries 13

2.1 Computational Cryptography . 13

2.2 Public Key Encryption and Digital Signature Security Definitions 14

2.2.1 Public Key Encryption . 14

2.2.2 Digital Signatures . 16

2.3 Formal Cryptography . 20

2.3.1 Symbols and Rules . 20

2.3.2 The Dolev-Yao Model . 21

2.3.3 Example: Needham-Schroeder Protocol 26

2.3.4 Strengths and Weaknesses of Symbolic Analysis 27

2.4 The Universally Composable Security Framework 28

2.4.1 Parties and Protocols . 29

2.4.2 Ideal Functionalities, Ideal Protocols, and Hybrid Protocols 30

2.4.3 Realizing Ideal Functionalities . 31

3 Universally Composable Symbolic Analysis for Public Key Encryption 35

3.1 Overview . 36

3.2 Simple Protocols . 38

3.3 Concrete to UC: Fpke and its Realization 40

3.4 UC to Dolev-Yao: The Mapping Lemma . 42

3.5 Dolev-Yao Back to UC: DY Mutual Authentication and F2ma 46

7

4 Analyzing Previous Ideal Functionality Formulations 49

4.1 Implicit Restrictions on Ideal Realizations 50

4.2 Public Key Encryption . 51

4.3 Signatures and Certification with Encryption 52

4.3.1 Fsig and Fcert . 52

4.3.2 Adversarial Signature Selection . 54

4.3.3 Signature Looseness . 55

5 Redefining Ideal Functionalities 57

5.1 Public Key Encryption . 58

5.2 Signatures and Certification with Encryption 59

6 Realizing Ideal Functionalities 63

6.1 Public Key Encryption . 63

6.2 Signatures . 67

7 Adding Signatures to Universally Composable Symbolic Analysis 73

7.1 Dolev-Yao Algebra . 74

7.2 Simple Protocols . 77

7.3 UC to Dolev-Yao: The Revised Mapping Lemma 80

7.4 Dolev-Yao Back to UC: DY Mutual Authentication and F2ma 86

7.5 Using The Framework . 87

8 Future Research Directions 89

8.1 An EUF-ACMA Realizable Ideal Signature Functionality 89

8.2 Other primitives and protocol goals . 90

8.3 Mixing Ideal Functionalities . 90

8

List of Figures

2-1 The IND-CCA2 game . 15

2-2 The EUF-ACMA game . 18

2-3 Example Dolev-Yao parse tree . 22

2-4 The Needham-Schroeder protocol (informally) 26

2-5 The Needham-Schroeder symbolic protocol, PNS 27

2-6 Attacking the Needham-Schroeder protocol 28

3-1 A graphical representation of the UCSA framework 37

3-2 The grammar of simple protocols . 39

3-3 The [16] public-key encryption functionality, Fpke 41

3-4 The [16] certified public-key encryption functionality, Fcpke 42

3-5 The 2-party mutual authentication functionality 47

4-1 A double encryption protocol . 51

4-2 The double encryption protocol, expanded 52

4-3 The [14] signature functionality, Fsig. 53

4-4 The [14] certification functionality, Fcert. 54

4-5 A mixed protocol . 54

4-6 The mixed protocol, expanded . 55

4-7 A vouching protocol . 55

5-1 The public-key encryption functionality, Fpke 59

5-2 The certified public-key encryption functionality, Fcpke 60

5-3 The signature functionality, Fsig . 61

5-4 The certification functionality, Fcert . 61

9

7-1 A graphical representation of the UCSA framework with signatures 73

7-2 Example Dolev-Yao parse tree with signatures 76

7-3 The grammar of simple protocols . 78

7-4 The SPLICE authentication protocol . 87

7-5 The SPLICE symbolic protocol, PSPLICE 87

10

Chapter 1

Introduction

A cryptographic protocol is a set sequence of messages exchanged between two or more parties

who are trying to accomplish something. This “something” is what we call the protocol’s

goal – perhaps it’s the ability to establish a shared secret or maybe it’s just the reassurance

that a certain someone is still alive. Whatever the goal, the ability to accomplish it, despite

the presence of some adversary bent on being evil, is what we call protocol security.

Proving protocol security is difficult. There are a number of things that can go wrong

on a number of different levels. In general, we have models and tools that help us analyze

different parts of the protocol at different level, but no one way of combining these analysis

results into single, convincing proof of protocol security

In [16], Ran Canetti and Jonathan Herzog proposed combining two seemingly compli-

mentary bodies of work in order to create a unified framework for proving the security

of protocols. They layered the Dolev-Yao model [22] on top of the universally composable

(UC) secure framework [13] in order to create a new framework they named universally

composable symbolic analysis (UCSA). This framework takes a protocol and its goal, then

justifiably abstracts the protocol to a form where automated tools can help generate a con-

vincing proof that the protocol is secure, i.e. achieves its goal even in the presence of an

adversary.

Canetti and Herzog constructed universally composable symbolic analysis for protocols

that only use public key encryption. In this thesis we expand the framework to also include

digital signatures. In doing so, we identify and repair a flaw in their construction as well

as redefine the ideal public key encryption and digital signature functionalities to include

11

some new and needed properties of interest.

The parts of this thesis Chapter 2 provides a brief explanations of the models and

security definitions that are used in the universally composable symbolic analysis framework.

Chapter 3 then walks through Canetti and Herzog’s construction of the framework. Chapter

4 identifies a flaw in part of their construction and motivates the need for new definitions

of UC functionalities Fpke and Fsig. Chapter 5 presents and explains the new definitions,

followed by Chapter 6 which analyzes the computational security needed to realize them.

Finally, we once more present the universally composable symbolic analysis framework

in Chapter 7, complete with our fixes and the addition of digital signatures. Chapter 8

concludes with suggestions for related future research.

12

Chapter 2

Preliminaries

This chapter explains the models used to construct the UCSA framework as well as some

security definitions that are important for understanding the results of the framework

2.1 Computational Cryptography

Computational cryptography treats cryptography as a branch of complexity theory, model-

ing adversaries as probabilistic polynomial-time (PPT) algorithms and defining security in

terms of an adversary’s probability in accomplishing certain tasks. Probabilistic polynomial

time means that the adversary can make random choices, but must finish running in an

amount of time that is polynomial with respect to the size of the input it is running on.

Both the time-efficiency and the success probability of the adversary are generally tied to

a number known as the security parameter, k, which is set by the environment.

Computational proofs are grounded in a class of computational complexity problems

widely believed to be “hard,” i.e. not solvable by a probabilistic algorithm in time poly-

nomial to k. Examples of hard problems are the discrete log problem and factoring the

product of two large primes. A cryptographic scheme’s security is proved by assuming

the scheme isn’t secure, then constructing an efficient reduction to a hard problem, thus

reaching a believed contradiction.

Because of their mathematical foundation, computational proofs are desired when prov-

ing cryptographic security. These proofs, however, are hard to construct when trying to

analyze protocols. In addition to potentially unforeseen interactions between the different

primitives used, there are often security concerns when multiple instances of a protocol are

13

being run simultaneously. While it is sometimes possible to provide a computational proof

of protocol security, doing so is difficult and requires significant effort on the part of the

prover.

2.2 Public Key Encryption and Digital Signature Security

Definitions

In this section we define and explain the intuition behind computational notions of security

that will be useful later.

2.2.1 Public Key Encryption

An encryption scheme is a system allowing a party to transmit a message to another party

without an adversary learning the contents (or any function) of the message. With public

key encryption, this is achieved through the use of public and private keys. Before the

transmission of a message, a party B publishes a public key KB to all other parties. If party

A wishes to securely send a message m to B, A transmits the ciphertext of m encrypted

with KB , {|m|}KB
. Upon receiving {|m|}KB

, B uses a private key K−1
B that is known only to

him, to decrypt the ciphertext and retrieve m. An adversary who knows KB but not K−1
B

should not be able to extract any meaningful information about m when given {|m|}KB
.

More formally, we define a public key encryption scheme as follows:

Definition 1 (Public Key Encryption) A public key encryption scheme consists of three

algorithms (gen, enc, dec):

• gen : 1k → K × K′, is a key generation algorithm. K and K′ are the sets of possible

public and private keys, respectively.

• enc : K ×M → C, is an encryption algorithm. M and C are the sets of possible

plaintext messages and ciphertexts, respectively.

• dec : K′ × C →M, is a decryption algorithm.

One of the strongest and common definitions of public key encryption is indistinguisha-

bility against adaptive chosen ciphertext attack (IND-CCA2). With encryption, an adver-

sary should be totally clueless about the contents of a ciphertext. For IND-CCA2, we try

14

to capture this intuition by saying that even if an adversary picks two messages and is given

the ciphertext for one of them, it still can’t guess which of the two messages is the plaintext.

As with many security definitions in computational cryptography, this type of security

is described as a game played between the adversary and a challenger (the challenger is how

we model what the adversary sees in the environment). As mentioned before, the adversary

is a probabilistic algorithm that runs in time polynomial to the security parameter k.

Indistinguishable under chosen ciphertext attack, 2-phase (IND-CCA2)

Challenger
gen

-1k

-
kpub

�
(kpub, kpriv)

-
kpriv �

c0

-
m0

...
�

ci

-
mi

�
(m0,m1)

b
R
← {0, 1}

enc
-

(kpub,m
b)

� c∗

D

D

-c∗

c∗ - �
ci+1 6= c∗

-
mi+1

...

�

mpoly(k) -

cpoly(k) 6= c∗

�
g

?

b
?
= g

A

?

time

Figure 2-1: The IND-CCA2 game

For IND-CCA2, the game progresses as follows (Figure 2-1). The challenger runs

(kpub, kpriv) ← gen(1k) and hands kpub to A, the adversary. The challenger then gives

kpriv to a decryption oracle D. A can (adaptively) query D with ciphertexts ci and D will

send back the corresponding plaintexts mi ← dec(kpriv , ci). After some number of queries,

polynomial with respect to k, A hands the challenger two messages m0 and m1. The chal-

lenger picks b randomly from {0, 1} and sets c∗ ← enc(kpub,mb); it then hands c to both D

and A. A may now resume querying D, but is not allowed to ask for the decryption of c∗.

15

After a polynomial number of queries, the A outputs a guess g. If g = b, the adversary wins.

A scheme is considered IND-CCA2 secure if no adversary wins with probability significantly

better than it could achieve by just guessing a random g to begin with. More formally:

Definition 2 (IND-CCA2) A public key encryption scheme consisting of three algorithms,

S = (gen, enc, dec), is called indistinguishable against adaptive chosen ciphertext attack if

the following properties hold for any negligible function neg() and all large enough values of

the security parameter k with corresponding message space Mk:

Completeness: For all m ∈Mk,

Pr[(kpub, kpriv)← gen(1k);

c← enc(kpub,m);

m = dec(kpriv , c)] > 1− neg(k)

Ciphertext indistinguishability: For any PPT adversary A with access to decryption

oracle D,

Pr[(kpub, kpriv)← gen(1k);

(m0,m1)← AD(kpriv,·)(kpub, 1
k);

b
R
← {0, 1} ;

c∗ = enc(kpub,mb)

g ← AD(kpriv,c∗,·)(kpub, c
∗, 1k) :

b = g] < 1
2 + neg(k)

The extra completeness property ensures that a message remains the same after under-

going encryption and decryption. We define negligible functions as follows:

Definition 3 (Negligible Functions) A function f : N → R is negligible in k if, for

any polynomial q, f(k) ≤ 1
q(k) for all sufficiently large k. If f is negligible in k, we write

f ≤ neg(k).

2.2.2 Digital Signatures

Digital signatures are used when a party wants to indicate they have originated a message

m. A digital signature σ is dependent on some secret known only to the signer and on

16

the message being signed. The recipient of (m,σ) can then run a public verification algo-

rithm that will confirm or reject the message’s signature without requiring knowledge of

the signer’s secret. In this thesis, we will restrict our attention to schemes that accomplish

this using signing and verification keys.

We also restrict our attention to party behavior or signature schemes that somehow bind

signatures to their messages – this may be through the use of message revealing signatures

(where one can derive m from σ) or by treating a non-message revealing signature as invalid

unless explicitly attached to a particular message. For clarity of expression, we adopt the

latter practice and will always pair signatures with their messages in our examples.

More formally, we define a digital signature scheme as follows:

Definition 4 (Digital Signatures) A digital signature scheme consists of three algorithms

(gen, sig, ver):

• gen : 1k → K × K′, is a key generation algorithm. K and K′ are the sets of possible

signing and verification keys, respectively.

• sig : K×M→ S, is a signing algorithm. M and C are the sets of possible messages

and signatures, respectively.

• ver : K′ ×M×S → B, is a verification algorithm. It outputs a boolean bit indicating

whether it accepts or rejects the message signature pair.

A common definition for signature security is existential unforgeability under adaptive

chosen message attack (EUF-ACMA). As with IND-CCA2, we can describe the security

condition as a game between the adversary and the environment/challenger (Figure 2-2).

The challenger runs (ks, kv)← gen(1k) and hands verification key kv to A, the adversary.

The challenger then gives ks to a signing oracle S. A can (adaptively) query S with messages

mi and receive back the corresponding signatures σi ← sig(ks,mi). After some polynomial

number of queries, the adversary outputs a new message m that was never submitted as

a query to S, and a signature forgery σ. If ver(kv ,m, σ) = 1, then the adversary wins.

A scheme is considered EUF-ACMA if no adversary is able to win with non-negligible

probability. We call the interaction between the adversary and the signing oracle an adaptive

chosen message attack (ACMA)

17

Existentially unforgeable under adaptive chosen message attack (EUF-ACMA)

Challenger

gen
-1k

�
(ks, kv)

-
kv

-
ks

S

�
mi

-
(m0, σ0)

...

�
mpoly(k)

-
(mpoly(k), σpoly(k))

A

�
(m,σ)

?

m 6= mi, for all 0 ≤ i ≤ poly(k)

& ver(kv ,m, σ) = 1

?
?

time

Figure 2-2: The EUF-ACMA game

Definition 5 (EUF-ACMA) A signature scheme consisting of three algorithms, Σ =

(gen,sig,ver), is called existentially unforgeable under adaptive chosen message attack (EUF-

ACMA) if the following properties hold for any negligible function neg() and all large enough

values of the security parameter k with corresponding message space Mk:

Completeness: For all m ∈Mk,

Pr[(ks, kv)← gen(1k);

σ ← sig(s,m);

0← ver(m,σ, v)] < neg(k)

.

Unforgeability: For any PPT forger A with access to signing oracle S,

Pr[(ks, kv)← gen(1k);

(m,σ)← AS(ks,·) :

1← ver(m,σ, kv) and A never asked S to sign m] < neg(k)

EUF-ACMA security allows for multiple valid signatures on the same message – there

are some situations that require a stronger definition of security. For example, there are

18

non-malleable unique signature schemes, which are schemes resilient to an ACMA with

only one valid signature for a given message and verification key. Even stricter are one-time

signature schemes, schemes that only sign one message once for a given verification key.

There is, however, a security definition that is stronger than EUF-ACMA but weaker

than unique signatures. Schemes that meet this alternative security definition are called

“strong” [31, 5] 1 or “super-secure” [23]. Usage of strong signatures are not as common as

EUF-ACMA or one-time signatures, but there are situations where one-time signatures are

used when only strong signatures are necessary [21].

Strong security is very similar to EUF-ACMA – in fact, their definitions differ only

slightly. In the definition of EUF-ACMA, the adversary is required to output a valid

message/signature pair (m,σ) where m was never a query to the signing oracle. For strong

security, we make the adversary’s game easier: in order to win, it must output a valid pair

(m,σ), where (m,σ) itself was never a response from the oracle. Referring back to the

EUF-ACMA game in Figure 2-2, the strong signature game is the same as replacing the

second-to-last line with “(m,σ) 6= (mi, σi) for all 0 ≤ i ≤ poly(k).” We consider this to be an

easier game since any adversary that wins the EUF-ACMA game wins the strong signature

game as well. By making the game easier, we make our security definition stronger. A

strong signature scheme not only guarantees that past signatures don’t help for forging

signatures on new messages, but that they also don’t help for forging new signatures on old

messages.

Definition 6 (Strong Signature Schemes) A signature scheme consisting of three algo-

rithms, Σ = (gen,sig,ver), is called strong if the following properties hold for any negligible

function neg() and all large enough values of the security parameter k with corresponding

message space Mk:

Completeness: For any m ∈Mk,

Pr[(s, v)← gen(1k);

σ ← sig(s,m);

0← ver(m,σ, v)] < neg(k)

.

1This is a different definition of “secure signatures” than the one presented by Goldwasser, Micali, and
Yao in 1983 [24] which was eventually renamed EUF-ACMA security

19

Strict Unforgeability: For any PPT forger F with access to signing oracle S,

Pr[(s, v)← gen(1k);

(m,σ)← FS(s,·) :

1← ver(m,σ, v) and F never received (m,σ) from S] < neg(k)

2.3 Formal Cryptography

Formal cryptography uses mathematical or logical systems to analyze protocols. The results

of such analysis, however, do not directly apply to real protocols because of the high level of

abstraction used. For the purpose of this thesis, we will focus on symbolic analysis and the

Dolev-Yao model. We first describe symbolic analysis and its importance in general terms,

before describing the specifics of the Dolev-Yao model.

2.3.1 Symbols and Rules

In symbolic analysis, we think of messages as symbols and cryptographic operations as sym-

bolic operations on these messages. For example, if we had a message that we represented

with the symbol m, then the ciphertext of m encrypted under a public key K would be

the symbol {|m|}
K

, where we let {|·|} represent encryption. If we have an entity, we can

represent the entity’s initial knowledge as a set S of symbols. We can then write rules

governing the way new symbols are formed and handled based on what the entity knows

already. Given this initial set S , we can talk about the closure of S (denoted as C[S]) which

is the result of applying these rules. Continuing with public key encryption, we might write

the following rules:

1. S ⊆ C[S]

2. If m ∈ C[S] and K ∈ C[S], then {|m|}
K
∈ C[S]

3. If {|m|}
K
∈ C[S] and K−1 ∈ C[S], then m ∈ C[S] (where K−1 is K ’s corresponding

secret key)

Rule 1 says that anything the entity knows, it can derive. Rule 2 says that if the entity

can derive a message and a public key, then the entity can derive the ciphertext of the

message under the key. Lastly, Rule 3 says that if the entity can derive a ciphertext under

20

a particular public key and can also derive the corresponding private key, then the entity

can derive the ciphertext’s plaintext.

We generally think of the formal model adversary as being in complete control of the

network it is a part of. The ability to represent the knowledge of an adversary during

a protocol run is important for this allows an analyzer to determine what messages an

adversary is capable of creating when trying to attack the protocol. The closure operation

does this, allowing a protocol checker to iterate all plausible attacks.

2.3.2 The Dolev-Yao Model

The Dolev-Yao model is a popular model for symbolic analysis which serves as the founda-

tion for a number of formal methods. There are many variants on the Dolev-Yao model and

we define one that serves our purpose of analyzing public key encryption. We also include

the notion of a local output as proposed in [16].

The first thing to define is the set of atomic symbols from which the Dolev-Yao algebra

is constructed.

Definition 7 (The Dolev-Yao Message Algebra) Messages in the Dolev-Yao algebra

A are composed of atomic elements of the following types:

• Party identifiers (M) – These are denoted by symbols P1, P2, .. for a finite number

of names in the algebra. These are public and are associated with a role of either

Initiator or Responder.

• Nonces (R) – These can be thought of as a finite number of private, unpredictable

random-strings. These symbols are denoted by R1, R2, ... and so on.

• Public keys (KPub) – These are denoted by symbols Ke
P1

,Ke
P2

, ... which are public and

each associated with a particular party identifier.

• A garbage term, written G, to represent ill-formed messages,

• ⊥, to represent an error or failure,

• Starting, to indicate that a protocol execution has begun, and

• Finished, to indicate that a protocol execution has ended.

21

Messages in the algebra can be compounded by the following symbolic operations:

• pair: A×A → A. When messages m and m′ are paired, we write m|m′.

• encrypt : KPub×A → A. When message m is encrypted with public key Ke
P , we write

{|m|}Ke
P

.

The Dolev-Yao algebra is free, meaning that no two distinct symbols represent the same

message. An important consequence of this is that we can define a parse tree for each

message which describes the unique symbolic structure of the message (see Figure 2-3).

{∣∣∣∣∣

{∣∣∣R1| {|P1|}Ke
P0

|R2

∣∣∣
}

Ke
P1

|
{∣∣Ke

P0

∣∣}
Ke

P0

∣∣∣∣∣

}

Ke
P1

{∣∣∣R1| {|P1|}Ke
P0

|R2

∣∣∣
}

Ke
P1

|
{∣∣Ke

P0

∣∣}
Ke

P0

Ke
P1

{∣∣∣R1| {|P1|}Ke
P0

|R2

∣∣∣
}

Ke
P1

Ke
P0

{∣∣Kv
P0

∣∣}
Ke

P0

Ke
P0

R1| {|P1|}Ke
P0

|R2 Ke
P1

R2
R1| {|P1|}Ke

P0

{|P1|}Ke
P0

R1

Ke
P0

P1

Figure 2-3: Example Dolev-Yao parse tree

22

As mentioned in Section 2.3.1, one of the major benefits of describing the world using

symbols is that we can enumerate the messages it is possible for an entity to make, based

on the symbols it already knows. In particular, we assume that the adversary completely

controls the network, but that any message delivered by the adversary must be derivable

from the adversary’s initial knowledge and the messages communicated by honest parties.

The adversary’s initial knowledge consists of all public keys (KPub), all identifiers (M),

and those nonces that the adversary itself generates (RAdv). To derive new messages, the

adversary has only a few symbolic operations available to it: pairing two known elements,

separating a pair, encrypting with public keys, and decrypting messages whose keys belong

to corrupted parties (MAdv ⊂M).

This restriction on the adversary’s ability to derive messages is captured by the Dolev-

Yao closure operation:

Definition 8 (Closure) Let

• RAdv ⊂ R be the set of nonces associated with the adversary,

• Ke
Adv = {Ke

P : P ∈MAdv} be the set of encryption keys belonging to corrupted parties

(Ke
Adv ⊂ KPub), and

Then the closure of a set S ∈ A, written C[S], is the smallest subset of A such that:

1. S ⊆ C[S],

2. M∪KPub ∪RAdv ⊆ C[S],

3. If {|m|}K ∈ C[S] and K ∈ Ke
Adv, then m ∈ C[S],

4. If m ∈ C[S] and K ∈ KPub, then {|m|}K ∈ C[S],

5. If m|m′ ∈ C[S], then m ∈ C[S] and m′ ∈ C[S], and

6. If m ∈ C[S] and m′ ∈ C[S], then m|m′ ∈ C[S].

Symbolic Protocols

We now define what it means for a party to engage in a symbolic protocol. A party running

a protocol in the Dolev-Yao model consists of the following components:

23

• An identity (represented by a symbol fromM).

• A role in the protocol (either Initiator or Responder)

• An internal state – we represent the party’s internal state as all messages received in

execution so far.

• An input port from which the party receives its initial input and state

• A communications port that the party uses to send and receive messages in A.

• A local output port where the party can output elements in A.

A protocol in the Dolev-Yao model is then defined as a set of actions performed by

parties, based on their identity, role, internal state, and an incoming message.

Definition 9 (Symbolic Protocol) A symbolic protocol P is a mapping from states (S =

A∗), identities (M), roles (O), and messages (A, the incoming message) to a new state (S,

the old state plus the new message) plus an algebra value sent as a message (A×message)

and/or a value given as a local output (A× output). More formally, P is:

P : S ×M×O ×A → S ×A×message×A× output

When a party terminates, it is set to a special state that only transitions to itself and

only outputs ⊥.

Technically there are no constraints on the messages that parties are asked to output –

this means we can define a symbolic protocol where a party is asked to output a message

that is not derivable from its internal state. These protocols are not particularly useful,

so we will only consider protocols that are derived from efficiently implementable protocols

(see Section 3.2). Intuitively, if we think of a closure operation C ′[S] which is defined in

terms of an honest party instead of the adversary, we can think of these good protocols as

ones where a party’s outputs during protocol execution must be within the closure of the

party’s internal state.

24

Dolev-Yao protocol trace

When a symbolic protocol is executed, the participants start with an internal state, then

respond to messages delivered by the adversary who can produce any message in the clo-

sure of its knowledge (which includes all messages communicated by participants). When

describing a protocol execution, we want to capture this initial state and the messages ex-

changed, as well as the internal operations performed by the adversary to produce messages

not explicitly communicated by honest participants. We call this description the Dolev-Yao

trace of the protocol execution.

Definition 10 (Dolev-Yao Trace) We inductively define a Dolev-Yao trace t for protocol

P as a description of events that occur during the execution of P.

t = H0 H1 H2 ... Hn−2 Hn1
Hn

where event Hi is either

• of the form [“input”, P, oi, P
′,S], which indicates the initial input of participant P to

take the role oi and interact with participant P ′, assuming initial internal state S.

• an adversary event (where j, k < i) of the form

– [“enc”, j, k,mi], in which case mk ∈ KPub and mi = {|mj|}mk
,

– [“dec”, j, k,mi], in which case mk ∈ K
e
Adv, and mj = {|mi|}mk

,

– [“pair”, j, k,mi], in which case mi = mj|mk

– [“extract-l”, j,mi], in which case mj = mi|mk for some mk ∈ A,

– [“extract-r”, j,mi], in which case mj = mk|mi for some mk ∈ A,

– [“random”,mi], in which case mi = R for some R ∈ RAdv ,

– [“name”,mi], in which case mi = A for some A ∈M,

– [“pubkey”,mi], in which case mi = K for some K ∈ KPub,

– [“deliver”, j, Pi], in which case the message mj is delivered to party Pi.

• or a participant event of the form [“output”, Pi,mi] or [“message”, Pi,mi], in which

case [“deliver”, k, pi] is the most recent adversary event in the trace (for some k) and

25

the protocol action for Pi in its current role and internal state, upon receiving mk, is

to output/send message mi. (P(Sj , oi,mk, Pi)→ (Si,mi, {output,message})).

2.3.3 Example: Needham-Schroeder Protocol

The classic example for illustrating the need and power of formal models is the Needham-

Schroeder protocol (Figure 2-4). Formally, we can define this protocol as the symbolic

A→ B : {|A,RA|}K e
B

A← B : {|RA, RB |}K e
A

A→ B : {|RB |}K e
B

Figure 2-4: The Needham-Schroeder protocol (informally)

protocol PNS seen in Figure 2-5.

The purpose of this protocol is two-fold. Firstly, it functions as a way to exchange

secret numbers – the two parties engaged in the protocol should be the only ones to learn

the values RA and RB. Secondly, the protocol attempts to provide authentication: at the

end of a successful protocol run, both parties should know each other’s identity, that they

are engaged in this protocol with each other, and what the values of RA and RB are.

This protocol was proposed in 1978 [30]. Seventeen years later, Lowe discovered and

repaired a flaw in the protocol’s satisfaction of the authentication conditions [26]. In Lowe’s

attack (Figure 2-6), A begins a protocol run with a malicious entity M . M then, posing as

A, begins a protocol run with B and convinces B that it is interacting with A.

At the end of this attack, B believes it is interacting with A but A believes it is in-

teracting with M . Lowe’s fix was to include the responder’s name in the second message,

making it

A← B : {|B,RA, RB |}KA

Lowe then used a model checker to prove that no other attacks of a similar nature

were possible [27]. His attack illustrates the types of vulnerabilities that might be present

in a protocol but may be difficult to discover unless the underlying implementations of

cryptographic primitives are abstracted out.

26

Let DP represent the initial input/state of party P , let ∗ denote a wildcard which
can be used to match anything, and let P be a place holder for the party identity
each party thinks it is engaged with. We define PNS to be the mappings:

• {DA} ×A× Initiator × {} →

{DA ∪ {RA}} ×
〈
{|A|RA|}K e

P

〉
×message× 〈Starting|A|P |K e

P 〉 × output

• {DA ∪ {RA}} ×A× Initiator ×
〈
{|RA|RP |}K e

A

〉
→

S⊥ ×
〈
{|RP |}K e

P

〉
×message× 〈Finished|A|P |K e

P 〉 × output

• {DB} ×B ×Responder ×
〈
{|P |RP |}K e

B

〉
→

{DB ∪ {RP , RB}}×
〈
{|RP |RB |}K e

P

〉
×message×〈Starting|B|P |K e

P 〉×output

• {DB ∪ {RP , RB}} ×B ×Responder ×
〈
{|RB |}K e

P

〉
→

S⊥ × 〈Finished|B|P |K e
B〉 × output

• S⊥ × ∗ × ∗ × 〈∗〉 →

S ∗× ⊥ ×output

Figure 2-5: The Needham-Schroeder symbolic protocol, PNS

2.3.4 Strengths and Weaknesses of Symbolic Analysis

As the Section 2.3.3 example illustrates, abstracting cryptographic primitives to intuitive

symbolic operators allows high level analysis which can identify protocol vulnerabilities

that might be missed otherwise. An important byproduct of these formal analysis methods

is the ability to create protocol checkers which can automate the task of searching for

vulnerabilities (e.g. [9, 32, 29]).

While useful, formal method proofs are not rigorous. Symbolic analysis ignores the

details of how cryptographic primitives are realized or information the adversary may learn

outside of applying the closure operations. For example, most symbolic analysis tools do not

include exponentiation as a closure operation. Thus, if a protocol involves the transmitting

of values g and a, then uses the value ga, the model would not capture the fact that the

27

A→M : {|A,RA|}K e
M

M(A)→ B : {|A,RA|}K e
B

M(A)← B : {|RA, RB |}K e
A

A←M : {|RA, RB |}K e
A

A→M : {|RB |}K e
M

M(A)→ B : {|RB |}K e
B

Figure 2-6: Attacking the Needham-Schroeder protocol

adversary also knows ga. It is difficult to introduce exponentiation to these models since

many protocols rely on exponentiation properties that violate the freeness of the model’s

algebra (e.g. commutativity, (ga)b = (gb)a).

In addition, the way primitives are used makes implicit assumptions about the security

of the concrete schemes implementing these cryptographic primitives. Looking back on

our symbolic rules for public key encryption, it is not hard to see that a scheme that

realizes encryption as the model uses it must be quite strong, at least IND-CCA2 secure

(indistinguishable against chosen ciphertext attack, 2 phases. See Section 2.2.1). Unless

a scheme with proper security characteristics is used when implementing these protocols,

proofs given in a formal model are incomplete at best.

By removing the details of cryptographic primitives, formal cryptography gives protocol

designers insight into protocol vulnerabilities that would be difficult to see otherwise. This

abstraction, however, is made with few or no restrictions or justifications, weakening any

security guarantees one might wish to assert about the protocol.

2.4 The Universally Composable Security Framework

The universally composable (UC) secure framework [13] creates a model for analyzing pro-

tocol security by replacing cryptographic primitives and protocol goals with ideal function-

alities. Here we present an informal overview of the UC framework, focusing on concepts

that will be relevant for later sections of this thesis; we first describe how parties and pro-

tocols are modeled in the framework, then how these ideal functionalities work. Finally we

explain what it means for a protocol to securely realize an ideal functionality.

28

2.4.1 Parties and Protocols

Parties in the UC framework are modeled by sets of interactive Turing machines (ITMs).

All ITMs are required to run in PPT (as defined in Section 2.1) with respect to security

parameter k. Each ITM represents a program running within a party, the programs commu-

nicate with other programs within the party using local input and output tapes. Each ITM

has a session-identifier (SID) identifying the session or protocol instance it is participating

in. Each ITM also has a party identifier (PID) identifying which party the ITM is a part

of. Each ITM’s identifier pair (SID,PID) is unique to the ITM. In addition, each party has

a role identifier (RID) which identifies the party’s role in a protocol as either initiator or

responder.

ITMs have incoming and outgoing communication tapes which model the messages sent

in and out of the network. The adversary itself is also an ITM with control over message

delivery between parties, subject to the synchrony guarantee. Within the set of parties

there are two types: corrupted parties and uncorrupted (or honest) parties. In the general

UC framework, the adversary is able to adaptively corrupt honest parties – in this work,

however, we will limit ourselves to non-adaptive adversaries which are not allowed to corrupt

new parties during protocol execution.

A real world protocol is modeled as parties running the protocol in the presence of an ad-

versary and environment ITM Z, with input z. The parties, environment, and the adversary

are the protocol participants, all with the same security parameter k. The modeled proto-

col execution progresses as a sequence of activations of individual participants. Different

participants must abide by different rules when activated, but while activated, a participant

may read the appropriate tapes and write on the tape of at most one other participant.

Once an activation is complete, the participant whose tape was modified is activated next

– if no communication tapes were modified, then the environment Z is activated next. The

following is a list of rules regulating each participant’s behavior:

1. The environment is the first participant to be activated. The environment may read

the local output tapes of all participants. It may then activate another party to run

the protocol or write on the local input tape of a party or the adversary.

2. The adversary may read its own tapes and the outgoing communication tapes of all

parties. It may either deliver a message (from some other party) on the incoming

29

communication tape of a party or report information to Z by writing on its own

output tape.

3. A party reads its input (either from the environment or the adversary) and writes

either an output on its local output tape or an outgoing message on its outgoing

communication tape. If the party is honest, it follows its code; if the party is corrupted,

the adversary is allowed to control the internal actions of the party.

Protocol execution ends with the halting of the environment Z, which outputs a single

bit. We designate this output as execp,A,Z(k, z, ~r) when Z is interacting with parties running

protocol p in the presence of adversary A on security parameter k, input z, and participant

randomness ~r = rZ, rA, r1, r2, We let execp,A,Z(k, z) be a random variable representing

execp,A,Z(k, z, ~r) where ~r is chosen at random. Let execp,A,Z be the probability ensemble

{execp,A,Z(k, z)}
k∈N,z∈{0,1}∗ .

An important point to observe is that all participants are only able to read their own

local input and incoming communication tapes. This means communications from the

environment or adversary to participants are not visible to other participants.

2.4.2 Ideal Functionalities, Ideal Protocols, and Hybrid Protocols

Ideal functionalities are descriptions of how various functionalities or tasks should behave.

They are meant to capture our intuitive sense of what it means to do something like public

key encryption or mutual authentication. An ideal functionality F is modeled by an ITM

which interacts with the protocol parties and adversary, but not the environment. For

convenience, we will refer to the ITM running F as F. We represent the interaction between

an ideal functionality F and participants with a special type of protocol, called an ideal

protocol, denoted IF. In the ideal world, the ideal protocol for functionality F is to just

have participants give their inputs to F and accept its outputs. This exchange between a

party P and F is not visible to other participants,2 but when P receives a value from F, it

immediately copies the value to its local output tape.

As will become clearer later, an adversary’s interaction with the ideal functionality differs

from that of the protocol parties. The adversary that interacts with the ideal protocols is

2This is achieved by parties writing directly onto F’s input tape and F responding onto their input tape

30

called the simulator (S). We also use idealF,S,Z to represent the probability ensemble

{execIF,S,Z(k, z)}
k∈N,z∈{0,1}∗ .

A hybrid protocol is a protocol where parties execute as described before, but have access

to one or more copies of each ideal functionality. Instead of all parties and all protocol

instances interacting with the same ideal functionality, the parties may interact with any

number of ideal functionalities, distinguished by their unique SIDs. In the hybrid model,

parties no longer automatically copy the results of their ideal functionality to their output

tape.

2.4.3 Realizing Ideal Functionalities

We now have a protocol model where primitives have been replaced with ideal functionalities

which behave precisely how we expect them to – the question is then whether it’s possible

for a concrete cryptographic schemes to realize these ideal functionalities. Moreover, what

does it mean for a concrete scheme to realize an ideal functionality to begin with?

Intuitively, we want to say a scheme in the real world realizes an ideal functionality if

running a protocol using the concrete scheme does not result in anything that couldn’t have

happened in the ideal world. To formalize this notion, we use the environment to assert

that the results of the two worlds look the same.

In order to formalize, we need to define our notion of “looks the same.” As you recall,

we defined the environment Z to output a single bit at the end of a protocol execution –

if the two worlds are indistinguishable, then all environments Z should be unable to act

differently (output different bits) when interacting with the two worlds.

Definition 11 (Binary indistinguishability) Two binary distribution ensembles

{X(k, a)}k∈N,a∈{0,1}∗ and {Y (k, a)}k∈N,a in{0,1}∗ are called indistinguishable (written X ≈

Y) if for any c ∈ N there exists k0 ∈ N such that for all k > k0 and for all a we have

|Pr(X(k, a) = 1)− Pr(Y (k, a) = 1)| < neg(k) .

Definition 12 (Secure Realization of Ideal Functionality) Let F be an ideal func-

tionality and let p be a protocol. We say p securely realizes F if there exists a S such

that for any environment Z we have

31

idealF,S,Z ≈ execp,A,Z

This definition says that a protocol p realizes F if for every adversary A wrecking havoc

in the real world with p there is some simulator S that could have done the same thing in

the ideal world with F (except in negligibly small instances of adversarial randomness).

The universal composition theorem

Say r is a protocol that securely realizes an ideal functionality F and p is some F-hybrid

protocol. We can construct the composed protocol pr where parties running p replace each

copy of F with a new instance of r with fresh randomness. If r is a G-hybrid protocol

(i.e. protocol r uses ideal functionality G), then pr is a G-hybrid protocol as well. The

universal composition theorem says that it doesn’t matter if the protocol realizing one ideal

functionality is itself a hybrid protocol – the environment Z is still unable to distinguish

between protocol executions in the ideal world with these ideal functionalities and the real

world using concrete schemes. [13].

Theorem 1 (Universal Composition) Let F,G be ideal functionalities. Let p be a F-

hybrid protocol and let r be a protocol that securely realizes F. Then, for any adversary A,

there exists a simulator S such that for any environment Z,

exec
F
p,S,Z ≈ execpr ,A,Z

In particular, if p securely realizes functionality G, then so does pr.

This theorem has three important implications:

1. It implies that it is sufficient to analyze the security of a single instance of a protocol.

If a single instance of the protocol securely realizes an ideal functionality, then it will

do so even when combined with other instances of itself or other protocols

2. The realization of ideal functionality G may be a hybrid protocol using other func-

tionalities F. In the context of this thesis, this will be important for showing that a

protocol achieve its goal:

32

Take a protocol goal and describe it as an ideal functionality G. If we want to know

whether or not a concrete protocol p realizes G, then we can analyze if the F-hybrid

version of p, with idealized cryptographic primitives, realizes G. If it does, then that

implies that the concrete p realizes its goals when instantiated with cryptographic

schemes that realize the ideal primitive functionalities.

3. In order for a concrete schemes to securely realize ideal functionality, each scheme must

be reinitialized with new randomness for every new instance of the protocol. This is

a rather onerous requirement since it means all parties must create and distribute

new keys at the beginning of each protocol instance, dramatically increasing protocol

overhead.

We can, however, remove this requirement by (effectively) including the protocol

instance SID in each ciphertext (for schemes realizing Fpke) scheme or signature (for

Fsig, described later) as shown in previous work of universal composition with joint

state [19].

33

34

Chapter 3

Universally Composable Symbolic

Analysis for Public Key Encryption

In 1981, Dolev and Yao proposed their symbolic model for analyzing protocols [22]. In it,

the analyzer thinks of cryptographic primitives as symbolic operations where everything

behaves in an intuitive manner. For example, symbols are unambiguous – a nonce looks

very different from an encryption key which looks different from an entity’s name. If a

message is encrypted, an entity without the proper key is unable to learn anything about

the message’s ciphertext: message length, (potentially) which key encrypted it, whether

the plaintext is the same as another ciphertext’s, etc. These sorts of assumptions are very

strong and are not trivially satisfiable by most cryptographic schemes. Their model became

the foundation for a number of model variants and computational tools, but it wasn’t until

recently that serious attention was given to reconciling the assumptions of the Dolev-Yao

model with computational cryptography.

In 2000, Abadi and Rogaway first offered a way to meaningfully describe the compu-

tational security definitions needed to satisfy the behavioral assumptions of cryptographic

primitives in the Dolev-Yao model [3, 4]. Subsequent works [2, 28, 25] have refined the tech-

nique of Abadi and Rogaway. The idea is to convert the symbols of the Dolev Yao model

into bit strings using a concrete scheme for the cryptographic primitive in question. The

goal of such a proof is to show that a real world adversary is unable to produce anything

the symbolic adversary is unable to produce. This is done by considering an adversary that,

interacting with the translated bit-string version of a Dolev-Yao exchange, outputs a string

35

corresponding to the translation of a symbol not in the closure of symbolic adversary. Using

the stated security of the scheme used in translation, it is shown that the probability of this

happening, taken over the randomness of the translation and the adversary, is negligible

for all adversaries. This implies real world adversaries interacting with strings using this

scheme are no more powerful than their symbolic counterparts and we say that the scheme

realizes the Dolev-Yao security assumptions for that primitive.

Developing the techniques for translating Dolev-Yao assumptions to computational se-

curity definitions was an important first step for creating computationally sound proofs of

protocol security, but it still left some doubt. A concrete scheme may realize the Dolev-Yao

notion of a primitive, but that still didn’t prove that a protocol deemed “secure” in the

Dolev-Yao model necessarily achieved a desired computational goal. In addition, the sym-

bolic protocol checkers needed to check the security of protocols in the context of multiple

protocol instances with potential composing issues – perhaps giving further constraints not

originally considered when formulating the realization proof.

With these issues in mind, Ran Canetti and Jonathan Herzog proposed a new framework

for leveraging symbolic analysis of protocols to construct computational proofs of security

[16]. Symbolic analysis is effective at automating proof security but suffers from composing

issues. The universally composable framework has simplified composing issues but still

involves relatively detailed cryptography when attempting to analyze protocols. Canetti

and Herzog layer Dolev-Yao analysis on top of the UC framework in order to capture the

complementary benefits of both. This chapter describes their construction which is defined

over mutual authentication protocols using public key encryption. In Chapter 7, we will

reconstruct the framework, but for protocols that use both public key encryption and digital

signatures.

The definitions presented in this chapter are taken directly from Canetti and Herzog’s

paper ([16]) with minor modifications for clarity.

3.1 Overview

The general idea of the universally composable symbolic analysis framework is to translate

a real world protocol into a symbolic protocol in the Dolev-Yao model where we can then

subject it to automated analysis techniques to prove some symbolic criterion about the

36

Real World
p, S

UC/Ideal World
p,Fcpke

Dolev-Yao Model
P, {|·|}

K e

Dolev-Yao Model
DY 2-party mutual authentication

UC/Ideal World
F2ma

§3.3

Mapping Lemma
§3.4 §3.5

Resulting UCSA proof

Protocol Checker

Figure 3-1: A graphical representation of the UCSA framework

protocol. We then step down through the abstraction levels and show that if the symbolic

protocol meets a symbolic criterion then the real world protocol achieves a real goal.

The protocol is first transformed into a protocol in the Fcpke-hybrid model, where the

use of encryption is replaced by use of ideal encryption functionality Fcpke. Actually, Fcpke

represents the ideal public key encryption functionality (Fpke) combined with an idealized

key binding functionality since key distribution is implicit in the Dolev-Yao model (i.e. it’s

just accepted that everyone knows everyone else’s public keys). By translating our protocol

into the Fcpke-hybrid model, the framework avoids these key distribution issues.

The Fcpke-hybrid version of the protocol is then translated into a symbolic protocol

in the Dolev-Yao model. In this form, automated tools can analyze the possible symbolic

traces for attacks. This analysis is particularly efficient in the framework since tools only

need to analyze the correctness of a single protocol instance, thanks to the guarantees of

the UC framework [13, 19]

After proving that the symbolic protocol satisfies a particular symbolic property, it

37

remains to show that the symbolic property implies a real protocol goal. This is done by

showing that an ideal functionality that captures the intuition of the concrete protocol’s

goal is realized by any Fcpke-hybrid protocol whose DY translation satisfies the symbolic

property. It then follows that the real-world protocol realizes its goal, as described by the

goal’s idealized functionality description.

3.2 Simple Protocols

As one might imagine, not all protocols are representable in the Dolev-Yao model. In par-

ticular, the translation of a real protocol to a symbolic protocol can only occur if the original

protocol is a “simple protocol.” A simple protocol is one where participants are only asked

to perform actions that are the natural analogues of symbolic operation: concatenation,

splitting, nonce generation, encryption, decryption, etc. A protocol that requires an hon-

est party to xor two values together, for example, would not be a simple protocol. The

Needham-Schroeder protocol, before and after Lowe’s fix, is a simple protocol. This is a

necessary restriction for the universally composable symbolic analysis framework as cur-

rently formulated. While this excludes a number of important protocols, the set of possible

simple protocols is still a rich one. We formally define simple protocols as follows:

Definition 13 (Simple protocols) A simple protocol is a pair of interactive Turing ma-

chines (ITMs) {M1, M2}, one for each role, where each machine Mi implements an algorithm

described by a pair (Σ,Π):

• Σ is a store, a mapping from variables to tagged values (explained further below) and

• Π is a program that expects as input

– The security parameter k,

– Its SID SID, its PID PID, and its RID RID,

– PID1 which represents the name for the other participant of this protocol execu-

tion.

The program tags the input values, binds them to variables in the store, and then acts

according to a sequence of commands consistent with the grammar in Figure 3-2.

38

Π ::= begin; statementlist

begin ::= input(SID,RID,PID0,PID1,RID2, ...);
(Store 〈“role”,RID〉, 〈“name”,PID0〉, 〈“name”,PID1〉, 〈“name”,PID2〉,...
in local variables MyRole, MyName, PeerName, OtherName2,...
respectively.

statementlist ::= statement statementlist

| finish

statement ::= newrandom(v)
(generate a k-bit random string r and store 〈“random”, r〉 in v)

| encrypt(v1, v2, v3)
(Send (Encrypt, 〈PID,SID〉 , v2) to Fcpke where v1 = 〈“pid”,PID〉,
receive c, and store 〈“ciphertext”, c, 〈PID1,SID〉〉 in v3)

| decrypt(v1, v2)
(If the value of v1 is 〈“ciphertext”, c′〉 then send
(Decrypt, 〈PID0,SID〉 , c′) to Fcpke instance 〈PID0,SID〉,
receive some value m, and store m in v2 Otherwise, end.

| receive(v)
(Receive message, store in v)

| output(v)
(send value of v to local output)

| pair(v1, v2, v3)
(Store 〈“pair”, σ1, σ2〉 in v3, where σ1 and σ2 are the values of
v1 and v2, respectively.)

| separate(v1, v2, v3)
(if the value of v1 is 〈“join”, σ1, σ2〉, store σ1 in v2
and σ2 in v3 (else end))

| if (v1 == v2 then statementlist else statementlist

(where v1 and v2 are compared by value, not reference)
finish ::= output(〈“finished”, v〉); end.

The symbols v, v1, v2 and v3 represent program variables. It is assumed that 〈“pair”, σ1, σ2〉
encodes the bit-strings σ1 and σ2 in such a way that they can be uniquely and efficiently
recovered. A party’s input includes its own PID, the PID of its peer, and other PIDs in the
system. Recall that the SID of an instance of Fcpke is an encoding 〈PID,SID〉 of the PID
and SID of the legitimate recipient.

Figure 3-2: The grammar of simple protocols

39

The structure of simple protocols makes it simple to find the Dolev-Yao counterpart to

a simple protocol:

Definition 14 (Mapping of simple protocols to symbolic protocols) Let p = {M0, M1}

be a simple protocol. Then p̂ is the Dolev-Yao protocol

Pi : S ×M×O ×A→ S ×A×message×A× output

that implements ITM M, except that:

• The variables of M are interpreted as elements of the symbolic message algebra A.

• Instead of receiving as input SID, PID0, PID1, RID, the store is initialized with its own

name P0, its own key KP0
, and a name P1 and public key KP1

of the other participant.

The symbols P0 and P1 represent PID0 and PID1, respectively. Similarly, the symbols

K0 and K1 represent 〈PID0,SID〉 and 〈PID1,SID〉, respectively.

• Instead of creating a new random bit-string, the symbolic protocol returns R(i,n) and

increments n (which starts at 0),

• Instead of sending (Encrypt, 〈PID,SID〉 ,M) to Fcpke and storing the result, the com-

posed symbol {|Σ(M)|}
KP1

is stored instead (where Σ(M) is the value bound to the

variable M in the store Σ).

• Instead of sending (Decrypt, 〈PID0,SID〉 ,C) to Fcpke and storing the result, the value

stored depends on the form of Σ(C). If Σ(C) is of the form {|M |}
KP0

then the value

M is stored. Otherwise, the garbage value G is stored instead.

• Pairing and separation use the symbolic pairing operator.

• Lastly, the bit-strings “starting” and “finished” are mapped to the Dolev-Yao symbols

Starting and Finished, respectively.

3.3 Concrete to UC: Fpke and its Realization

In order to translate a real-world protocol into a F-hybrid protocol, we need to formulate

the ideal functionality used by the protocol then determine what computational security

definition realizes it.

40

Proposals for ideal functionality formulations were part of the original description of the

UC framework [13], but, over time, a number of changes and corrections have been made

to these formulations in conjunction with an increased understanding of the security needs

for schemes realizing these functionalities [18, 6, 16, 15].

Canetti and Herzog present a revised formulation of Fcpke (Figure 3-4) which implies

the formulation of Fpke given in Figure 3-3.

Functionality Fpke

Fpke proceeds as follows over message domain {0, 1}∗. The SID is assumed to consist of a
pair SID = (PIDowner, SID′), where PIDowner is the identity of a special party, called the
owner of this instance.

Key Generation: Upon receiving a value (KeyGen, sid) from some party S, verify that
sid = (S, sid′) for some sid′. If not, then ignore the request. Else, do the following:

1. Hand (KeyGen, sid) to the adversary.

2. Receive a value e from the adversary and hand it to S. If the adversary has
not already done so, it also provides the description of deterministic polytime
algorithm D.

Encryption: Upon receiving a value (Encrypt, SID, e′, m) from a party P proceed as follows:

1. If m /∈ D then return an error message to P.

2. If m ∈ D then

• If e = e′, hand (Encrypt, SID, P) to the adversary. Else, hand
(Encrypt, SID, e′, m, P) to the adversary.

• Receive a tag c from the adversary, record the pair (c, m), and hand c to
P. (If c already appears in a previously recorded pair then return an error
message to P.)

Decryption: Upon receiving a value (Decrypt, SID, c) from the owner of this instance, pro-
ceed as follows. (If the input is received from another party then ignore.)

1. If there is a recorded pair (c, m), then hand m to P.

2. Otherwise, compute m = D(c), and hand m to P.

Figure 3-3: The [16] public-key encryption functionality, Fpke

This formulation of Fpke is a variation on the one given by Canetti, Krawczyk, and

Nielsen [18] which they proved to be securely realizable by a concrete public key encryption

scheme if and only if the scheme is IND-CCA2. As we shall in Chapter 4, this formulation

of Fpke is also somewhat flawed, particularly for use in the framework being constructed.

This flaw will provide motivation for the redefining of the functionality in Chapter 5.

41

Functionality Fcpke

Fcpke proceeds as follows, when parameterized by message domain D. The SID is assumed
to consist of a pair SID = (PIDowner, SID′), where PIDowner is the identity of a special party,
called the owner of this instance.

Initialization: Expect the first message received from the adversary to contain a descrip-
tion of a deterministic polytime algorithm, D.

Encryption: Upon receiving a value (Encrypt, SID, m) from a party P proceed as follows:

1. If m /∈ D then return an error message to P.

2. If m ∈ D then

• Hand (Encrypt, SID, P) to the adversary. (If the owner of this instance of
Fcpke is corrupted, then hand also the entire value m to the adversary.)

• Receive a tag c from the adversary, record the pair (c, m), and hand c to
P. (If ciphertext already appears in a previously recorded pair then return
an error message to P.)

Decryption: Upon receiving a value (Decrypt, SID, c) from the owner of this instance, pro-
ceed as follows. (If the input is received from another party then ignore.)

1. If there is a recorded pair (c, m), then hand m to P.

2. Otherwise, compute m = D(c), and hand m to P.

Figure 3-4: The [16] certified public-key encryption functionality, Fcpke

3.4 UC to Dolev-Yao: The Mapping Lemma

In order to be sure protocol execution and adversarial actions are the same in both the UC

and Dolev-Yao worlds, we need a way of describing the messages exchanged as well as the

meaningful internal states of participants. As you’ll recall, in Section 2.3.2 we described

the outcome of a symbolic protocol execution with the symbolic trace. We now define an

analogue: the concrete protocol trace. Note that per our discussion in Section 3.1, this

definition uses ideal functionality Fcpke rather than Fpke.

Definition 15 (Traces of concrete protocols) Let p be a F-hybrid protocol. Inductively

define tracep,A,Z(k, z, ~r), as the trace of protocol p in conjunction with adversary A and

environment Z with inputs z,~r, and security parameter k. Initially, the trace is the null

string. The trace then grows as the protocol’s execution progresses.

• If the environment provides input m to a party with id (SID,RID), then

〈“input”, (SID,RID),m〉 is appended to the end of t.

• If the adversary provides input m to a party with id PID, then 〈“adv”,PID,m〉 is

42

appended to the end of t.

• If a party PID generates a new random string r, then 〈“random”, r〉 is appended to t.

• If a party pairs values m1 and m2 to form (m1,m2), then 〈“pair”,m1,m2〉 is appended

to t.

• If a party PID writes a message m, it does so in one of two ways

– if it writes m on its local output tape, then 〈“output”,PID,m〉 is appended to t.

– if it writes m on its outgoing communication tape, then 〈“message”,PID,m〉 is

appended to t.

• If Fcpke is activated by party PID with call (Encrypt, 〈PID,SID〉 ,m) and Fcpke responds

with ciphertext c, then 〈“ciphertext”, 〈PID,SID〉 ,m, c〉 is appended to t. (If Fcpke

returns, ⊥ then nothing is appended to t).

• If Fcpke is activated by party PID with call (Decrypt, 〈PID,SID〉 , c) and Fcpke responds

with plaintext m, then 〈“dec”, 〈PID,SID〉 , c,m〉 is appended to t. (If Fcpke returns, ⊥

then nothing is appended to t).

tracep,A,Z(k, z, ~r) denotes t upon completion of the protocol execution. Let tracep,A,Z(k, z)

denote the random variable for tracep,A,Z(k, z, ~r) when ~r is uniformly chosen. Let tracep,A,Z

denote the probability ensemble {tracep,A,Z(k, z)}
k∈N,z∈{0,1}∗

Because of the linear manner in which the environment, adversary, and parties are

activated in the UC framework, the order in which new elements are appended to the trace

is unambiguous for a particular tracep,A,Z(k, z, ~r).

We now define a mapping from concrete traces to symbolic traces. It should be clear

that the mapping will result in a sequence of interactions between parties and the adversary

which resembles a Dolev-Yao trace. The purpose of the subsequent Mapping Lemma is to

prove that a concrete protocol’s trace maps to a valid Dolev-Yao trace of the corresponding

symbolic protocol with 1− neg(k) probability.

Definition 16 (The mapping from concrete traces to symbolic traces) Let p be a

concrete Fcpke/Fsig-hybrid protocol and let t be a trace of an execution of p with security

parameter k, environment Z with input z, and random input vector ~r. We determine the

43

mapping of t to a Dolev-Yao trace in two steps. (These steps can be thought of as two

“passes” on the string t.)

(I.) First, we read through the string t character by character, in order, and inductively

define the following partial mapping f from {0, 1}∗ to elements of the algebra A. (Note that

the patterns in t addressed below may be nested and overlapping. That is, the same substring

may be part of multiple patterns. A pattern is recognized as soon as the last character in

the pattern is read.)

• Whenever we encounter a pattern of the form 〈“name”, β〉 for some string β and

f(〈“name”, β〉)is not yet defined then set f(〈“name”, β〉) = P for some new symbol

P ∈M not in the range of f so far.

• Whenever we encounter in some event a pattern of the form 〈“random”, β〉 for some

string β and f(〈“random”, β〉) is not yet defined then set f(〈“random”, β〉) = N for

some new symbol N ∈ R that is not in the range of f so far.

• Whenever we encounter a pattern of the form 〈〈“pid”,PID〉 , 〈“sid”,SID〉〉 for some

strings PID,SID, and f(〈“pubkey”, 〈PID,SID〉〉) is not yet defined, then set

f(〈“pubkey”, 〈PID,SID〉〉) = K for some new K ∈ KPub not in the range of f .

• Whenever we encounter a pattern of the form 〈“pair”, β1, β2〉, then proceed as fol-

lows. First, if f(β1) is not yet defined then set f(β1) = G, where G is the garbage

symbol. Similarly, if f(β2) is not yet defined then set f(β2) = G. Finally, set

f(〈“pair”, β1, β2〉) = f(β1)|f(β2).

• Whenever we encounter a pattern of the form 〈“ciphertext”, 〈PID,SID〉 ,m, c〉 for some

strings PID,SID,m, c, then f is expanded so that f(〈“ciphertext”, 〈PID,SID〉 , c〉) =

{|f(m)|}
f(〈“pubkey”,〈PID,SID〉〉). (Recall that such a pattern is generated whenever an

encryption call to Fcpke is made. Also, at this point both f(m) and f(〈“pubkey”, 〈PID,SID〉〉)

must already be defined, since this is an encryption call made by a party running a

simple protocol.)

• Whenever we encounter a pattern of the form 〈“dec”, 〈PID,SID〉 , c,m〉, then proceed

as follows. First, if f(m) is not yet defined, then set f(m) = G, where G is the garbage

symbol. Next, set f(〈“dec”, 〈PID,SID〉 , c〉) = {|f(m)|}
f(〈“pubkey”,〈PID,SID〉〉). (Recall

that such a pattern is generated whenever a decryption call to Fcpke is made. The

44

case where f(m) = G occurs when a ciphertext was not generated via the encryption

algorithm. It includes both the case where the decryption algorithm fails and the case

where the decryption algorithm outputs a message that cannot be parsed by simple

protocols.)

(II.) In the second step, we construct the actual Dolev-Yao trace. Let t = G1||G2|| . . . tn

be the concrete trace. Then construct the Dolev-Yao trace t̂ by processing each G in turn,

as follows:

• If Gi = 〈“input”, (SID,RID),m〉, then we find m = f(m), and generate the symbolic

event H = [“input”,P ,m] (where P is the symbolic name of the input recipient).

• If Gi = 〈“ciphertext”, 〈PID,SID〉 ,m, c〉 or Gi = 〈“dec”, 〈PID,SID〉 , c,m〉, then no sym-

bolic event is generated.

• If Gi = 〈“output”,PID,m〉 then Gi is mapped to the symbolic participant event

(f(〈“name”,PID〉), output , f(m)).

• If Gi = 〈“message”,PID,m〉 then Gi is mapped to the symbolic participant event

(f(〈“name”,PID〉),message , f(m)).

• If G = 〈“adv”,PID,m〉, let m = f(m). Then there are two cases:

1. m is in the closure of the symbolic interpretations of the messages sent by the

parties in the execution so far, i.e.

m ∈ C
[{

m′ : m′ = f(m′) and the event 〈“message”,PID,m′〉 is a prior event in t
}]

.

In this case there exists a finite sequence of adversary events that produces mi.

Then G is mapped to this sequence of events Hi1, Hi,2. . .Hi,n′ so that the message

of Hi,n′−1 is mi and Hi,n′ = [“deliver”, (i, n′ − 1),P ′] (where P ′ is the Dolev-Yao

name of the concrete participant who received the message from the concrete

adversary).

45

2. Otherwise, m is not in the above closure. In this case, G maps to the Dolev-Yao

event [“fail”,mi].

The desired result is then to show that if t is the concrete trace of a simple protocol p,

then the mapping of t, t̂ is a valid Dolev Yao trace of the symbolic protocol p̂. This is the

Mapping Lemma of [16].

Lemma 2 (The Mapping Lemma) Let F denote the ideal functionality Fcpke. For all

simple protocols p, adversaries A, environments Z, and inputs z of length polynomial in the

security parameter k,

Pr
[
t← trace

F
p,A,Z(k, z) : t̂ is a valid DY trace for p̂

]
≥ 1− neg(k)

We’ll postpone the Mapping Lemma’s proof until Chapter 7 when we will prove the

Mapping Lemma for both public key encryption and digital signatures based on the ideal

function formulations presented in Chapter 5.

3.5 Dolev-Yao Back to UC: DY Mutual Authentication and

F2ma

After a concrete simple protocol has been transformed into a symbolic protocol, we can

determine whether or not the symbolic protocol satisfies a certain criterion. Having done

this, it remains to be shown that the criterion satisfaction implies the meeting of the con-

crete protocol’s goals. In their paper, Canetti and Herzog consider two different protocol

objectives: mutual authentication and key exchange. We limit our discussion in this thesis

to mutual authentication. They define Dolev-Yao mutual authentication as follows:

Definition 17 (Dolev-Yao 2-party mutual authentication) A Dolev-Yao protocol P

provides Dolev-Yao mutual authentication (DY-MA) if all Dolev-Yao traces for P that

include an output message 〈Finished |P0|P1|m〉 by participant P0, where P0, P1 6∈ MAdv ,

include also a previous input message 〈Starting |P1|P0|m
′〉 by P1.

Or, in other words, the party P0 only thinks the protocol has completed successfully if

the party it wants to authenticate with, P1, believes it is engaged in the protocol instance

with P0.

46

Functionality F2ma

1. The functionality F2ma begins with a variable Finished set to false.

2. Upon receiving an input (Authenticate, SID, P, P′, RID) from some party P, where
RID ∈ {Initiator, Responder}, do:

(a) If this is the first input (i.e., no tuple is recorded) then denote P0 = P, P1 = P′,
and record the pair (P0, P1).

(b) Else, if the recorder pair (P0, P1) satisfies P = P1 and P′ = P0, set Finished to
true.

(c) In either case, send the pair (P, P′), RID to the simulator.

3. Upon receiving from the simulator a request (Output, SID, X), if X is either P0 or P1,
and Finished is true then send Finished to X . Else, do nothing.

Figure 3-5: The 2-party mutual authentication functionality

They then showed that for ideal 2-party mutual authentication (Figure 3-5), the follow-

ing holds:

Theorem 3 Let p be a simple two-party protocol. Then p realizes F2ma if and only if the

corresponding symbolic protocol p̂ satisfies Dolev-Yao 2-party mutual authentication

At the end of this chain of protocol transforming, mapping, and constraint proving,

we finally have a computationally sound argument that a concrete protocol realizes its

protocol goal as described by an ideal functionality. Using this framework, Canetti and

Herzog describe the process for proving that for protocol p instantiated with IND-CCA2

secure encryption and a sufficiently secure key distribution system, if p̂ satisfies Dolev-Yao

2-party mutual authentication, then p realizes F2ma. Or, in the language of UC traces,

idealF2ma,S,Z ≈ execp,A,Z.

47

48

Chapter 4

Analyzing Previous Ideal

Functionality Formulations

Ideal functionalities capture our intuition for how a cryptographic operations should occur.

Armed with an ideal functionality description, we can find concrete schemes and protocols

that securely realize the ideal and use them in protocols secure in the knowledge that they

will behave in a manner we’d expect. Correctly defining an ideal functionality, however,

has proven to be more difficult than previously thought, as evidenced by the constant revi-

sion of proposed ideal functionalities for seemingly straightforward cryptographic concepts

[12, 18, 16, 17, 6]. In this section we draw attention to an implicit assumption made in

many functionality formulations which leads to undesired behavior, particularly when the

functionality is used in the UCSA framework. We then analyze the current formulations of

ideal public key encryption and digital signature functionalities, identifying properties that

are present but undesired or desired by not present in these formulations.

In particular, the formulation for ideal public key encryption used in [16] (Fpke, Figure

3-3) provides too much power to the adversary, allowing the adversary to learn information

it should not have access to. This over-empowerment was missed when constructing the

UCSA framework and, uncorrected, invalidates the framework’s Mapping Lemma.

The current formulation for ideal signatures (Fsig [15], Figure 4-3) is valid in the envi-

ronment for which it was proposed – one where it is assumed that all signatures generated

are public knowledge. However, when the signature functionality is combined with encryp-

tion functionality, this is not longer true and a different formulation must be defined if

49

signatures are to be used in conjunction with other cryptographic primitives in protocol

proving frameworks such as the UCSA framework.

Throughout the chapter, we will illustrate these undesired ideal functionality behaviors

using example protocols. In these examples we employ the following notation for readability

and to avoid ambiguity with Dolev-Yao notation. For public key encryption, we use encA(m)

to denote the ciphertext for message m, encrypted under party A’s encryption key. For

digital signatures we use sigA(m) to denote the signature of message m for party A’s

verification key.

4.1 Implicit Restrictions on Ideal Realizations

The ideal functionality literature has primarily focused on realizing ideal functionalities

through use of stateless (or “memoryless”), local algorithms. By “stateless,” we mean each

algorithm does not maintain state between invocations; by “local,” we mean there is no

direct communication between the invocations of a scheme’s algorithms (e.g. my instance

of enc does not directly communicate with your instance of dec or even with my own

instance of dec). This focus is often made implicitly and shortchanges the power of the

UC framework – the ability to fully abstract the implementation details of a functionality’s

underlying implementation.

If a proof showing a particular security type realizes an ideal functionality assumes the

implementing scheme lacks state and is local, then the results of the proof may not extend

to schemes that do not meet this assumption. For example, a signature scheme where sig

appends all previous signatures to each new signature is still technically EUF-ACMA, but

violates our intuition for how a secure signature scheme should act.1 There has been work

on stateful signature schemes [7, 15], but such papers are less common and, at times, miss

some subtleties of this condition.2

Taking these schemes into consideration is important. In addition to schemes that

purposefully maintain state or use remote input, many schemes which are local and stateless

are used in such a way that introduces state or external input. A real world use of an

1To see why, consider a protocol where a party A takes a message m, and broadcasts encB(m, sigA(m)).
An adversary (who is not party B) should remain unable to produce A’s signature on message m. How-
ever, the moment party A signs some other message m′ and communicates (m′, sigA(m′)) in the clear, the
adversary learns the previous signature sig(m)A despite our intuition that it should remain hidden.

2Canetti’s [15] formulation of Fsig is, in fact, realizable by EUF-ACMA schemes with state. The problem,
as we shall see in Section 4.3.2, stems from the Fsig formulation itself.

50

encryption or signature scheme might reset its key after some fixed number of uses. A

protocol might call for encrypted messages to contain a counter that increases with each

message exchanged. A device that holds secret plaintexts may encrypt any message but

only decrypt ciphertexts it generates itself. There is a uniform and intuitive sense of the

security/behavior we expect from any encryption or signature scheme, and definitions such

as IND-CCA2 and EUF-ACMA only capture it for local, stateless algorithms. A properly

formulated description of an ideal functionality, however, can serve as a standard for security

expectations, independent of the underlying scheme details.

4.2 Public Key Encryption

In past formulations of Fpke and Fcpke (Figures 3-3 and 3-4), the ideal functionalities have

allowed the adversary to choose the ciphertext strings. Since it was still difficult for ad-

versaries to decrypt ciphertexts, it was felt that allowing adversaries to choose these values

avoided placing too strong a limitation on concrete schemes realizing the ideal functionality.

Giving the adversary this power means the adversary knows the value of all cipher-

texts generated by protocol participants. As the double encryption protocol in figure 4-1

illustrates, this is a problem:

A→ B : R

A← B : encA{R, encB{m}}

Figure 4-1: A double encryption protocol

For honest participants A and B, it is clear that a passive adversary watching this

exchange only learns R and encA{R, encB{m}}. However, in an environment with ideal

functionalities (Figure 4-2), a passive adversary learns the values R, encB{m} = c, and

encA{R, encB{m}} = c′.

The Fpke ideal functionality does not require any unpredictability of the ciphertext, other

than message independence. This unpredictability is a desired property, it just happens that

its specification is not needed when being realized by stateless encryption schemes. To make

this requirement explicit, we will modify Fpke in Section 5.1 to no longer ask the adversary

for encryption values. Instead, the adversary will provide a randomized algorithm which

51

A→ B : R
B → Fcpke : (encrypt,m)

Fcpke → Adv : (encrypt, B)
Fcpke ← Adv : (ciphertext, c)

B ← Fcpke : (ciphertext, c)
B → Fcpke : (encrypt, A, (R, c))

Fcpke → Adv : (encrypt, A)
Fcpke ← Adv : (ciphertext, c′)

B ← Fcpke : (ciphertext, c′)
A← B : c

Figure 4-2: The double encryption protocol, expanded

will be executed to generate values. The adversary’s power in this new definition is strictly

weaker than in the previous definition.

4.3 Signatures and Certification with Encryption

Literature concerning ideal signature functionality has generally limited itself to an envi-

ronment where the signature functionality is the only one present. While determining a

satisfactory formulation in this type of environment is useful, it is merely a precursor to a

more powerful concept of an ideal signature functionality in an environment that includes

other ideal functionalities. Such a formulation would allow security proofs for protocols

involving multiple cryptographic primitives.

Unfortunately, the limited version of ideal signature functionality does not trivially

translate into one suited for coexistence with other ideal functionalities. In this subsection

we describe some of the inadequacies with the current Fsig and derivative Fcert formulations.

4.3.1 Fsig and Fcert

In [14, 15], Canetti presented a revised formulation for ideal signature functionality which

we reproduce in Figure 4-3 with some slight modifications for consistency. He showed this

formulation of Fsig is realizable by a concrete signature scheme if and only if the scheme is

EUF-ACMA and could be combined with an ideal certificate authority Fca to produce ideal

certification Fcert (Figure 4-4). In these formulations, it is assumed there are no encryption

like ideal functionalities in the environment.

52

Functionality Fsig

Key Generation: Upon receiving a value (KeyGen, sid) from some party S, verify that
sid = (S, sid′) for some sid′. If not, then ignore the request. Else, hand (KeyGen, sid)
to the adversary. Upon receiving (Verification Key, sid, v) from the adversary,
output (Verification Key, sid, v) to S, and record the pair (S, v). v is now the
verification key for S.

Signature Generation: Upon receiving a value (Sign, sid, m) from S,

1. Verify that sid = (S, sid′) for some sid′. If not, then ignore the request.

2. Send (Sign, sid, m) to the adversary.

3. Upon receiving (Signature, sid, m, σ) from the adversary, verify that no entry
(m, σ, v, 0) is recorded. If it is, then output an error message to S and halt.
Else, output (Signature, sid, m, σ) to S, and record the entry (m, σ, v, 1).

Signature Verification: Upon receiving a value (Verify, sid, m, σ, v′) from some
party P , hand (Verify, sid, m, σ, v′) to the adversary. Upon receiving
(Verified, sid, m, φ) from the adversary do:

1. If v′ = v and the entry (m, σ, v, 1) is recorded, then set f = 1.

2. Else, if v′ = v, the signer is not corrupted, and no entry (m, σ′, v, 1) for any σ′

is recorded, then set f = 0 and record the entry (m, σ, v, 0).

3. Else, if there is an entry (m, σ, v′, f ′) recorded, then let f = f ′.

4. Else, let f = φ and record the entry (m, σ, v′, φ).

Output (Verified, id, m, f) to P .

Figure 4-3: The [14] signature functionality, Fsig.

53

Functionality Fcert

Signature Generation: Upon receiving a value (Sign, sid, m) from S,

1. Verify that sid = (S, sid′) for some sid′. If not, then ignore the request.

2. Send (Sign, sid, m) to the adversary.

3. Upon receiving (Signature, sid, m, σ) from the adversary, verify that no entry
(m, σ, 0) is recorded. If it is, then output an error message to S and halt. Else,
output (Signature, sid, m, σ) to S, and record the entry (m, σ, 1).

Signature Verification: Upon receiving a value (Verify, sid, m, σ) from some party P ,
hand (Verify, sid, m, σ) to the adversary. Upon receiving (Verified, sid, m, φ) from
the adversary do:

1. If (m, σ, 1) is recorded, then set f = 1.

2. Else, if the signer is not corrupted and no entry (m, σ′, 1) for any σ′ is recorded,
then set f = 0 and record the entry (m, σ, 0).

3. Else, if there is an entry (m, σ, f ′) recorded, then let f = f ′.

4. Else, let f = φ and record the entry (m, σ, φ).

Output (Verified, id, m, f) to P .

Figure 4-4: The [14] certification functionality, Fcert.

4.3.2 Adversarial Signature Selection

As with Fcpke, Fsig allows the adversary to select signature values. If signature functionality

exists in an environment with encryption, this leads to the same problem demonstrated in

Section 4.2. A slight modification (Figure 4-5) of our earlier counterexample illustrates this

weakness.

A→ B : m

A← B : encA{m, sigB{m}}

Figure 4-5: A mixed protocol

Again, a passive adversary should only learn m and encA{m, sigB{m}}, but in an envi-

ronment with ideal functionalities (Figure 4-6), a passive adversary learns the value for m,

sigB{m} = σ, and encA{m, sigB{m}} = c.

As with public key encryption ideal functionality, this will require the use of a random-

ized function for generating signature values.

54

A→ B : R
B → Fcert : (sign,m)

Fcert → Adv : (sign, B)
Fcert ← Adv : (signature, σ)

B ← Fcert : (signature, σ)
B → Fcpke : (encrypt, A, (m,σ))

Fcpke → Adv : (encrypt, A)
Fcpke ← Adv : (ciphertext, c)

B ← Fcpke : (ciphertext, c)
A← B : c

Figure 4-6: The mixed protocol, expanded

4.3.3 Signature Looseness

Many common definitions of signature security allow for public modification of signatures.

Intuitively, a signature scheme loses little by allowing an adversary to construct a valid

message signature pair (m,σ) if it already knows of a different valid signature σ′ on message

m. In fact, it seems almost worrisome that a scheme that protects against such adversarial

action might be prohibitively restrictive – perhaps forcing signers to only sign a message

once.

It becomes difficult, however, for ideal functionalities to allow entities to create alternate

signatures if it is unclear to the functionality at the time of verification that the authoring

entity had seen a valid signature at the time of creation. In Fsig, if a message has been

validly signed in the past, then the adversary is allowed to choose the validity of any

proposed alternate signatures. This presents a problem when ideal signature functionality

is combined with ideal encryption functionality.

Consider a “vouching” protocol. Party A is taking messages, but only from parties who

are currently authorized to do so by some third party C whom A does not have direct

communication with. Parties A,B,C might engage in a protocol like that of Figure 4-7 to

allow B to send the message to A.

A→ B : sigA{R}
B → C : sigA{R}
B ← C : encB{sigC{R}}

A← B : encA{m, sigC{R}C}

Figure 4-7: A vouching protocol

55

When A verifies the final message of the protocol, the adversary has not yet seen C’s

signature of R. This does not, however, stop the adversary from stepping in at the final

stage of the protocol with a forgery of C’s signature:

A← Adv : encA{m
′, sigC{R}

′}

Because a valid signature for R exists under C’s key, when A goes to Fcert to verify this

forgery, the adversary can choose to have Fcert accept the signature, meaning the adversary

has produced C’s signature on R without knowing it beforehand.

This problem will require us to examine the looseness of the ideal signature formulation

(Section 5.2) and schemes that realize it (Section 6.2).

56

Chapter 5

Redefining Ideal Functionalities

We redefine the formalizations of ideal functionalities Fcpke, Fsig, Fcert based on the obser-

vations of Chapter 4. These new formalizations make use of “statistically unpredictable”

algorithms which are algorithms that, intuitively, “look random,” even to an adversary that

has been able to observe the algorithm’s output on adaptively chosen inputs.

To be more precise, any adversary, even a computationally unbounded one with adaptive

oracle access to G, is unable to guess, with non-negligible probability, G’s next output for

any input. We formally define statistically unpredictable algorithms as follows:

Definition 18 (Statistically Unpredictable) PPT algorithm G is statistically unpre-

dictable with respect to k (“statistically unpredictable” for short) if for any computationally

unbounded adversary A interacting with an instance of G with no initial state,

Pr[(x, y)← AG(·,1k)(1k);

y′ ← G(x, 1k) :

y = y′] < neg(k)

Note that the instance of G that our adversary has oracle access to is the same instance

that produces output y′ (after our adversary has announced its guess y).

A statistically unpredictable algorithm may maintain state as long as it remains unpre-

dictable with each call. We do, however, require that the algorithm be locally executable,

i.e. G(x) is executable on a PPT interactive Turing machine requiring no additional inputs

other than x. While the adversary is allowed to interact with the same instance of G all it

wants, it does not have access to G’s randomness.

57

Statistical unpredictability differs from pseudo-randomness because the algorithm is

randomized and is even unpredictable on inputs selected by the adversary. This definition is

also different from semantic security (where an adversary cannot tell the difference between

G(m) and G(m′) for m and m′ of its choosing) since we do not care if m is recoverable from

G(m), merely that G(m) is hard to predict for any m.

Fpke/Fcpke and Fsig/Fcert maintain lists of acceptable encryption (E) or signing (S)

algorithms, respectively, that are known to be poly-time and statistically unpredictable. In

the initial steps, when the adversary provides the algorithm descriptions, the adversary is

only allowed to choose algorithms from this list. This is analogous to an adversary picking

from the suite of encryption/signature schemes that are known to have the aforementioned

properties.

Note that we do not check, when creating ciphertexts/signatures, if the generated value

has either been created before or used by the adversary. By the statistical unpredictability

of the relative algorithms, the probability that a collision happens is negligible.

5.1 Public Key Encryption

In order to address the weakness in Fpke described in Section 4.2, we redefine the ideal

functionality (Figure 5-1) using the notion of statistical unpredictability. Users of public

key encryption want a functionality which allows them to use another party’s public key

to encrypt a message such that the other party can decipher the message, but anyone else

who sees the ciphertext learns nothing about the plaintext.

Informally, we want to simulate the functionality needed by users of the public key

encryption while giving the adversary as much power as possible. When a party needs

to generate a public key, we let the adversary pick the value for the key. When we need

to encrypt a message m, we run a statistically unpredictable algorithm, E, selected by the

adversary on 0|m|. We store the resulting ciphertext c along with plaintext m in our memory

and hand back c.1 If the encrypting party uses the wrong encryption key, then we give m

to the adversary and return a ciphertext c of the adversary’s choosing (as long as c isn’t a

repeat). When the owner of the public key wants to decrypt a ciphertext, we check if we

created the ciphertext – if so, we return the plaintext we remember for that ciphertext; if

1Because E is only given 0|m|, it is impossible to guess anything about m other than its length. Because
E is statistically unpredictable, the adversary is unable to guess the value of c.

58

not, we run a decryption algorithm D that the adversary gave us when it created the public

key.

Functionality Fpke

Fpke proceeds as follows over message domain {0, 1}∗. The SID is assumed to consist of a
pair SID = (PIDowner, SID′), where PIDowner is the identity of a special party, called the
owner of this instance.

Key Generation: Upon receiving a value (KeyGen, sid) from some party S, verify that
sid = (S, sid′) for some sid′. If not, then ignore the request. Else, do the following:

1. Hand (KeyGen, sid) to the adversary.

2. Receive a public key value e from the adversary and hand it to S. If the ad-
versary has not already done so, it also provides descriptions of statistically
unpredictable polytime algorithm E and deterministic polytime algorithm D.

3. Record the value e.

Encryption: Upon receiving a value (Encrypt, SID, e′, m) from a party P proceed as follows:

1. If m 6∈ Dk return an error message to P.

2. If e′ = e, set c = E(0|m|, 1k), record pair (c, m), and return c to P.

3. If e′ 6= e, hand (Encrypt, sid, e′, m) to the adversary and set c to its response. If
c already appears in a previously recorded pair, then return an error message to
P, otherwise return c to P.

Decryption: Upon receiving a value (Decrypt, SID, c) from the owner of this instance, pro-
ceed as follows. (If the input is received from another party then ignore.)

1. If there is a recorded pair (c, m), then hand m to P.

2. Otherwise, compute m = D(c), and hand m to P.

Figure 5-1: The public-key encryption functionality, Fpke

Combining Fpke with ideal key registration functionality Freg, we can create ideal certi-

fied public key encryption functionality Fcpke [16], as described in Figure 5-2. In Fcpke we

don’t have to worry about a party using the wrong key to encrypt a message.

5.2 Signatures and Certification with Encryption

A user of a signatures scheme desires the ability to output a verification key such that only

the user can produce the signature for a message under the verification key, meaning any

message accompanied with a valid signature must have been signed by the user.

As discussed in Section 4.3.3, loose signatures present a problem when formulating an

ideal signature functionality Fsig in a model containing encryption functionality. In order to

59

Functionality Fcpke

Fcpke proceeds as follows over message domain {0, 1}∗. The SID is assumed to consist of
a pair SID = (PIDowner, SID′), where PIDowner is the identity of a special party, called the
owner of this instance.

Initialization: Expect the adversary to provide the descriptions of statistically unpre-
dictable polytime algorithm E and deterministic polytime algorithm, D.

Encryption: Upon receiving a value (Encrypt, SID, m) from a party P proceed as follows:

1. Set c = E(0|m|).

2. Record pair (c, m), and hand c to P.

Decryption: Upon receiving a value (Decrypt, SID, c) from the owner of this instance, pro-
ceed as follows. (If the input is received from another party then ignore.)

1. If there is a recorded pair (c, m), then hand m to P.

2. Otherwise, compute m = D(c), and hand m to P.

Figure 5-2: The certified public-key encryption functionality, Fcpke

achieve such a formulation we must redefine Fsig to no longer allow loose signatures (Figure

5-3).

The description of ideal signature functionality is very similar to ideal public key en-

cryption but with some important differences. When asked to sign m, we give m to S since

we don’t care if signature σ reveals m, we only care that σ is hard for the adversary to

guess. For each message/signature pair we see, we remember the verification key it was

associated with and whether or not the signature was valid (the last bit b in the four-tuple).

We always honor signatures we created and act consistently on any message/signature pair

we’ve seen before. If someone tries to verify a forged message/signature pair under the

correct verification key, we reject it; if they’re verifying with the wrong key, then we allow

the adversarial algorithm V to choose the signature’s validity.

The ideal signing functionality Fsig can be combined with an ideal certification authority

(Fca, as described in [15]) to create an ideal certification functionality Fcert, described in

Figure 5-4. This allows us to remove the case when a party tries to verify with the wrong

key.

60

Functionality Fsig

Key Generation: Upon receiving a value (KeyGen, sid) from some party S, verify that
sid = (S, sid′) for some sid′. If not, then ignore the request. Else, hand (KeyGen, sid)
to the adversary. Upon receiving (VerificationKey, sid, v, S, V) from the adversary,
output (VerificationKey, sid, v) to S, and record (S, v, S, V). S and V are the de-
scriptions of a statistically unpredictable polytime algorithm and a polytime algo-
rithm, respectively. v is a verification key.

Signature Generation: Upon receiving a value (Sign, sid, m) from S,

1. Verify that sid = (S, sid′) for some sid′. If not, then ignore the request.

2. Set σ = S(m).

3. Output (Signature, sid, m, σ) to S and record the entry (m, σ, 1).

Signature Verification: Upon receiving a value (Verify, SID, m, σ, v′) from some party
P, proceed as follows.

1. If there is an entry (m, σ, b′) recorded, then set b = b′.

2. Else, if v′ = v and the signer is not corrupted, then set b = 0 and record the
entry (m, σ, 0).

3. Else, set b = V(m, σ, v′)

Output (Verified, sid, m, b) to P.

Figure 5-3: The signature functionality, Fsig

Functionality Fcert

Initialization: Expect the adversary to provide the descriptions of statistically unpre-
dictable, polytime algorithm S and polytime algorithm, V.

Signature Generation: Upon receiving a value (Sign, sid, m) from S,

1. Verify that sid = (S, sid′) for some sid′. If not, then ignore the request.

2. Set σ = S(m).

3. Output (Signature, sid, m, σ) to S and record the entry (m, σ, 1).

Signature Verification: Upon receiving a value (Verify, SID, m, σ) from some party P,
proceed as follows.

1. If there is an entry (m, σ, b′) recorded, then set b = b′.

2. Else, if the signer is not corrupted, set b = 0 and record the entry (m, σ, 0).

3. Else, set b = V(m, σ) and record the entry (m, σ, b).

Output (Verified, sid, m, b) to P.

Figure 5-4: The certification functionality, Fcert

61

62

Chapter 6

Realizing Ideal Functionalities

In papers concerning ideal functionalities, the relation between a concrete scheme and an

ideal functionality is generally described as an equivalence, meaning not only does a partic-

ular security definition realize the ideal functionality, but the ideal functionality implies the

security definition is needed. These papers generally assume, however, that the concrete

scheme will use local stateless algorithms. Under this assumption, we too will show that

our new ideal functionality formulations are in equivalence with existing security definitions.

However, as discussed in Section 4.1, these security definitions are not sufficient for proofs

involving algorithms that do not meet this criteria

6.1 Public Key Encryption

In our new formulation of Fpke (Figure 5-1) the adversary’s powers are strictly weaker than

in the previous formulation (Figure 3-3 from [18]). This implies that any local stateless

encryption schemes will still need to be at least indistinguishable under a 2-stage chosen

ciphertext attack (IND-CCA2) in order to realize Fpke. It remains to be shown, however,

that IND-CCA2 security is strong enough to realize this new Fpke.

Definition 19 Define protocol πS using encryption scheme S as follows

1. When activated, within some Pi and with input (KeyGen, id), run algorithm gen, out-

put the encryption key e and record the decryption key d.

2. When activated, within some party Pj and with input (Encrypt, id, e′,m), return enc(e′,m).

63

3. When activated, within Pi and with input (Decrypt, id, c), return dec(d, c).

Theorem 4 Let S = (gen, enc, dec) be an encryption scheme over domain D composed of

local, stateless algorithms. Then πS securely realizes Fpke with respect to domain D and

non-adaptive adversaries if and only if S is IND-CCA2 secure.

Proof. “Only if” - Assume that πS securely realizes Fpke but S is not IND-CCA2

secure. This implies that either S is not complete, or there exists an adversary F that can

win the CCA game (Figure 2-1) with a non-negligible advantage.

1. Assume Σ is not complete, i.e. there exists m ∈Mk such that Pr[(e, d)← gen(1k); c←

enc(e,m); m′ ← dec(d, c) : m 6= m′] > neg(k) for infinitely many k’s. In this case,

Z sets sid = (P, 0) and activates some uncorrupted party P with input (KeyGen, sid)

to obtain encryption key e. It then activates some other (uncorrupted) party with

(Encrypt, sid,m) to produce c. Z reactivates P with (Decrypt, sid, c) to obtain m′. and

outputs whether m = m′

When interacting with the ideal process, Z clearly always outputs 1, whereas in the

interaction with πS, Z will output 0 with non-negligible property. Thus, a πS that

realizes Fpke must use a S that exhibits completeness.

2. Assume there exists an adversary F for S who wins the CCA game with a non-

negligible advantage. Using F , we will construct an environment Z that can distin-

guish between interactions in the ideal process and in real-life.

When interacting with a network with two uncorrupted parties P1 and P2, Z simulates

a copy of F and does the following:

(a) Z activates P1 with input (KeyGen, sid) for some random sid. It takes the public

key e that is output by P1 and hands it to F .

(b) When F makes a decryption query c, Z activates P1 with input (Decrypt, sid, c)

and hands the resulting plaintext m back to F .

(c) When F outputs its two plaintext selections m0 and m1, Z chooses a bit b at ran-

dom and activates P1 with input (Encrypt, sid, e,mb). It then hands the resulting

challenge ciphertext c∗ to F .

64

(d) When F makes a subsequent decryption query c, Z checks if c = c∗. If it does,

Z outputs a random bit and halts. As long as c 6= c∗, Z activates P1 with input

(Decrypt, sid, c) and hands the resulting plaintext m back to F .

(e) When F outputs a guess b′, Z outputs b⊕ b′ and halts.

When Z is operating in the real-life model with adversary A and πS , its simulated F

sees a IND-CCA2 game using encryption scheme S. This implies that F will output

b′ = b with probability 1
2 +ε where ε is a non-negligible advantage, causing Z to output

0 with probability ≥ 1
2 + ε.

When Z is operating in the ideal process with any ideal adversary S and Fpke, then

the challenge ciphertext returned to F is generated independent of b. The ciphertext

c∗ is actually the output of E(0|mb|) where |m0| = |m1|. This means F is playing a

guessing game where no advantage is possible and will guess b′ = b with probability

exactly 1
2 .

Thus Z outputs 0 with non-negligibly higher probability when interacting with the

real world, violating our initial assumption. Thus there must not exist an adversary

F who can regularly win the CCA game under S.

This implies that if πS securely realizes Fpke, then S is IND-CCA2 secure.

“If” - Assume S is a local, stateless IND-CCA2 secure encryption scheme but that

πS does not realize Fpke, i.e. there is a real-life adversary A such that for any ideal-process

adversary S there exists an environment Z that can distinguish whether it is interacting

with A and πS or S and Fpke. Since Z succeeds for any S, it must succeed for the following

S:

• S runs a simulated copy of A, denoted AS.

• Any input from Z is forwarded to AS. AS’s outputs are copied to S’s outputs.

• When S receives request (KeyGen, sid) from Fpke, S runs gen(1k) to obtain public

encryption key e and private decryption key d. It then returns e as well as E = enc(e, ·)

and D = dec(d, ·) to Fpke.

65

Assume there is an environment Z that can distinguish between interactions. Without

loss of generality, we assume that in each execution, there are n parties asked to create

encryption keys and Z asks for each key to encrypt exactly p messages. We use Z to

construct the following algorithm G:

1. G receives a public key e and chooses numbers j
R
← {1, ..., n} and h

R
← {1, ..., p}.

2. G simulates a copy of Z and simulates its interaction with a system running πS and

A.

3. When Z activates party Pj with input (KeyGen, sid), G has Pj output the value e from

G’s input. (All other parties run gen when asked to generate a key).

4. At first, when Z instructs a party to encrypt a message m(l,i) under ePl
(where ePl

is

Pl’s encryption key), the encrypter outputs c(l,i) = enc(ePl
,m(l,i)). (For l = j, output

enc(e,m(j,i))).

5. At the h-th request to encrypt a message under e (m(j,h)), G outputs (m0,m(j,h))

to its challenger for the IND-CCA2 game, where m0 is a fixed message in D. Upon

receiving back challenge ciphertext c∗, it has the encrypter output c(j,h) = c∗ as the

encryption of m(j,h).

6. Subsequently, when Z instructs a party to encrypt a message m to under ePl
, G has

the encrypter output enc(ePl
,m0), where m0 is the same fixed message as before. (For

l = j, output enc(e,m0)).

7. Whenever a party Pl is activated with input (Decrypt, sid, c) where c = c(l,i) for some i,

G lets Pl output plaintext m(l,i) (even for those cases where the c(l,i) = enc(ePl
,m0)).

If Pl 6= Pj and c 6= c(l,i) for all i, then Pl responds with dec(dPl
, c). If l = j but

c 6= c(j,i) for all i, then G sends c to the decryption oracle and has Pj output the

returned plaintext m.

8. When Z outputs bit b′ and halts, G outputs b′ and halts as well.

We now argue that G succeeds at guessing b with non-negligible probability using a

hybrid argument. Let Z(φ) denote the output of Z after observing a simulated execution

in which case, Z sees ciphertexts c1,, cφ−1, cφ, cφ+1, ...cnp−1, cnp where ci for i ≥ φ is the

66

encryption of fixed message m0 under the appropriate encryption key. Note that when

all simulated parties (Z+Pl’s) have the same randomness, the messages requested for en-

cryption, up to the φth message, will be the same for Z(φ) and Z(φ + 1), but subsequent

encryption requests may not be the same.

By our original assumption, Z is able to distinguish between the ideal process (Z(1))

and the real world (Z(p + 1)) with non-negligible probability ε; this implies |Pr[Z(1) =

0]− Pr[Z(p + 1) = 0]| > ε. Without loss of generality, let us say that in fact

Pr[Z(1) = 0]− Pr[Z(p + 1) = 0] > ε.

This implies there exists a φ′ such that

Pr[Z(φ′) = 0]− Pr[Z(φ′ + 1) = 0] >
ε

np
.

Assume G guesses (j, h) such that m(j,h) is the φ′th message. This means that if G was

given back cφ′ = enc(e,m0), then G will output Z(φ′). Conversely, G will output Z(φ′ + 1)

if cφ′ = enc(e,m(j,h)). Thus when m(j,h) is the φ′th message, G will output b′ = b with

probability 1
2 + ε

2np
. Because j, h are random, we hit φ′ with probability 1

np
and so G

guesses b with probability 1
2 + ε

2(np)2
, which is a non-negligible advantage.

The existence of G is a contradiction of S’s IND-CCA2 security. It must then be that

there does not exist an Z that is able to distinguish between interactions in the ideal

process with Fpke and the real world with πS. Thus, for a local, stateless IND-CCA2

secure encryption scheme S, πS securely realizes Fpke. �

6.2 Signatures

As before, the adversary’s powers are strictly weaker in our new formulation of Fsig (Figure

5-3) as compared to the previous one (Figure 4-3 from [15]), implying that a local stateless

scheme must be at least EUF-ACMA to realize Fsig. In this case, however, we can go

one step further and show that any realizing scheme must be at least a strong signature

scheme. We also show that strong signature schemes may be used to securely realize this

new formulation of Fsig.

Definition 20 Define protocol πΣ using signature scheme Σ as follows

67

1. When activated, within some Pi and with input (KeyGen, id), run algorithm gen, out-

put the verification key v and record the signing key s.

2. When activated, within Pi and with input (Sign, id,m), return sig(s,m).

3. When activated, within some party Pj and with input (Verify, id, v′,m, σ), return

ver(v′,m, σ).

Theorem 5 Let Σ = (gen, sig, ver) be a signature scheme over domain D composed of

local, stateless algorithms. Then πΣ securely realizes Fsig with respect to domain D and

non-adaptive adversaries if and only if Σ is strong (Definition 6).

Note that neither the Fsig formulation nor the strong security definition requires that

verification be a deterministic process. We allow for probabilistic verification algorithms in

order to give as general a theorem statement as possible – in practice, however, deterministic

verification algorithms are almost always used. Strong security itself, does imply a sort of

verification “consistency” already; if it were possible for an adversary to produce a message

and signature where ver returned both 0 and 1 with non-negligible probabilities, then either

Σ is not complete or an adversary is able to violate Σ’s strict unforgeability.

Proof. “Only if” - Given a Σ that is not strong, we will construct an environment Z

that can distinguish whether it is interacting with A and πΣ or S and Fsig.

1. Assume Σ is not complete, i.e. there exists m ∈Mk such that Pr[(s, v)← gen(1k); σ ←

sig(s,m) : 0 ← ver(m,σ, v)] > neg(k) for infinitely many k’s. In this case, Z sets

sid = (P, 0) and activates some uncorrupted party P with input (KeyGen, sid), fol-

lowed by (Sign, sid,m). After obtaining v and σ, it then activates some other party

P′ with (Verify, sid,m, σ, v) and outputs the returned verification value.

When interacting with the ideal process, Z clearly always outputs 1, whereas in the

interaction with πΣ, Z outputs 0 with non-negligible property. Thus, a πΣ that realizes

Fsig must use a Σ that exhibits completeness.

2. Assume Σ is not strictly unforgeable; i.e. there exists a PPT forger G that can

produces a valid (m,σ) previously unknown to it. Z runs an internal copy of G and

hands it the public key v obtained from an uncorrupted party P. Whenever G asks

68

its oracle to sign a message m, Z activates P with input (Sign, sid = (P, 0),m), and

reports the output to G. When G generates a pair (m,σ), Z proceeds as follows:

(a) If (m,σ) was a previous response to G’s oracle queries, output 0 and halt.

(b) Otherwise, activate some other uncorrupted party with input (Verify, sid,m, σ)

and output the verification result.

Because v belongs to an uncorrupted party, when Z interacts with the ideal process, it

will always output 0. By the definition of G, when Z interacts with πΣ in the concrete

world, it will output 1 with some non-negligible probability. Thus, a πΣ that realizes

Fsig must use a Σ that exhibits strict unforgeability.

Therefore, a πΣ realizes Fsig only if Σ is strong.

“If” - Assume Σ is strong but πΣ does not realize Fsig; i.e. there is a real-life adver-

sary A such that for any ideal-process adversary S there exists an environment Z that can

distinguish between the interactions of A and πΣ or S and Fsig. Since Z succeeds for any S,

it must succeed for the following S:

• S runs a simulated copy of A, denoted AS.

• Any input from Z is forwarded to AS. AS’s outputs are copied to S’s outputs.

• When S receives a message (KeyGen, sid,P) from Fsig, it checks if sid is of the form

(P, sid′). If it is not, S ignores the request. If it is, S runs (s, v) ← gen(1k), records

s, and returns (VerificationKey, sid, v) along with algorithms S = sig(s, ·) and V =

ver(·, ·, ·) to Fsig.

• When AS tries to corrupt some party P, S corrupts P in the ideal process. If P is the

signer, then S reveals the signing key s (and potentially the internal state of algorithm

sig) as the internal state of P.

Assume Σ is complete (otherwise the theorem is proven). We consider how the environ-

ment might distinguish between the ideal and concrete world. There are two cases:

1. a party P0 outputs a new valid signature under another honest party P1’s verification

key without ever having been told the new signature value or

69

2. a signature for a message that was never signed by an honest party P verifies under

the key associated with P.

(1) This could never happen in the ideal process, since Fsig will never verify a forged

signature under an uncorrupted verification key, so it must be this event happens with

non-negligible probability during Z’s interaction with the concrete world. P0 outputs the

new signature on the behest of either Z or AG – if done on the behalf of Z, then this is no

different than situation (2), and we thus only consider if AG created this signature. If it

did, then A, with adaptive access to a signing oracle, is capable of producing a new valid

signature under a desired verification key with non-negligible probability. This violates Σ’s

strict unforgeability, so this must not be the case.

(2) This too could never happen in the ideal process, so it must be that the event

happens with non-negligible probability in the concrete world. We construct the following

PPT algorithm G:

• G runs a simulated copy of Z and simulates for Z an interaction with S in the ideal

process with Fsig (and some encryption functionality). Note that G plays the role of

both S and Fsig for simulated Z.

• Instead of actually simulating S, G runs a simulated copy of A and forwards its in-

puts/outputs accordingly. We label it AG.

• When S is asked to generate a verification key, instead of running gen, G gives AG

and the simulated Fsig the key, v, under which a forgery is desired.

• When the simulated Fsig is asked to sign m by the proper party, G asks its oracle to

sign m and then has Fsig return the obtained σ.

• Whenever the simulated Z activates some uncorrupted party with input

(Verify, sid,m, σ, v), G checks whether (m,σ) is a new valid signature pair previously

unseen. If it is, G outputs the pair and halts; if not, it continues the simulation. If

AG asks to corrupt the signer then G halts with a failure output.

Consider that AG outputs a new valid (m,σ) pair. If it doesn’t then by Σ’s completeness,

the nature of the ideal encryption’s realization, and our analysis of situation (1), Z’s view

of an interaction with A and πΣ is statistically close to its view of an interaction with

70

S and Fsig. Since we know Z distinguishes between these two cases with non-negligible

probability, it must be that, with non-negligible probability, AG asks for the signature on

a previously unseen signature pair that verifies. In this case G outputs a violation of Σ′s

strict unforgeability with non-negligible probability. Since Σ is strong, this must not be the

case.

It then follows that the environment is unable to meaningfully distinguish between the

ideal and real worlds and thus πΣ realizes Fsig if Σ is strong.

�

Note that in the “if” direction, we allowed for adaptive adversaries, but the “only if”

direction required non-adaptive adversaries. This implies that if Σ is strong then πΣ securely

realizes Fsig against adaptive adversaries (but not vice versa).

71

72

Chapter 7

Adding Signatures to Universally

Composable Symbolic Analysis

Having redefined the ideal functionalities as needed, we reconstruct the UCSA framework

now expanded to include digital signatures.

Real World
p, S,Σ

UC/Ideal World
p,Fcpke,Fcert

Dolev-Yao Model
P, {|·|}

K e , 〈[·]〉
K v

Dolev-Yao Model
DY 2-party mutual authentication

UC/Ideal World
F2ma

§6

Mapping Lemma
§7.3 §7.4

Resulting UCSA proof

Protocol Checker

Figure 7-1: A graphical representation of the UCSA framework with signatures

73

7.1 Dolev-Yao Algebra

The Dolev-Yao algebra is redefined to include the symbols necessary for signatures.

Definition 21 (The Dolev-Yao Message Algebra) Messages in the Dolev-Yao algebra

A are composed of atomic elements of the following types:

• Party identifiers (M) – These are denoted by symbols P1, P2, .. for a finite number of

names in the algebra. These are public and are associated with a role which is either

that of Initiator or Responder.

• Nonces (R) – These can be thought of as a finite number of private, unpredictable

random-strings. These symbols are denoted by R1, R2, ... and so on.

• Public keys (KPub) – These are denoted by symbols Ke
P1

,Ke
P2

, ... which are public and

each associated with a particular party identifier.

• Verification keys (KV er) – These are denoted by symbols Kv
P1

,Kv
P2

, ... which are public

and each associated with a particular party identifier.

• A garbage term, written G, to represent ill-formed messages,

• ⊥, to represent an error or failure,

• Starting, to indicate that a protocol execution has begun, and

• Finished, to indicate that a protocol execution has ended.

Messages in the algebra can be compounded by the following symbolic operations:

• pair: A×A → A. When messages m and m′ are paired, we write m|m′.

• encrypt : KPub×A → A. When message m is encrypted with public key Ke
P , we write

{|m|}Ke
P

• sign : KV er × A → A When message m is signed for verification key Kv
P , we write

〈[m]〉Kv
P

.

Definition 22 (Closure) Let

74

• RAdv ⊂ R be the set of nonces associated with the adversary,

• Ke
Adv = {Ke

P : P ∈MAdv} be the set of encryption keys belonging to corrupted parties

(Ke
Adv ⊂ KPub), and

• Kv
Adv = {Kv

P : P ∈MAdv} be the set of verification keys belonging to corrupted parties

(Kv
Adv ⊂ KV er).

Then the closure of a set S ∈ A, written C[S], is the smallest subset of A such that:

1. S ⊆ C[S],

2. M∪KV er ∪ KPub ∪RAdv ⊆ C[S],

3. If {|m|}K ∈ C[S] and K ∈ Ke
Adv, then m ∈ C[S],

4. If m ∈ C[S] and K ∈ KPub, then {|m|}K ∈ C[S],

5. If 〈[m]〉K ∈ C[S] then m ∈ C[S], 1

6. If m ∈ C[S] and K ∈ Kv
Adv, then 〈[m]〉K ∈ C[S],

7. If m|m′ ∈ C[S], then m ∈ C[S] and m′ ∈ C[S], and

8. If m ∈ C[S] and m′ ∈ C[S], then m|m′ ∈ C[S].

The algebra remains free under these changes. Figure 7-2 shows an updated example

symbolic message parse tree.

Definition 23 (Dolev-Yao Trace) We inductively define a Dolev-Yao trace t for protocol

P as a description of events that occur during the execution of P.

t = H0 H1 H2 ... Hn−2 Hn1
Hn

where event Hi is either

• of the form [“input”, P, oi, P
′,S], that indicates the initial input of participant P to

take the role oi and interact with participant P ′, assuming initial internal state S.

1As explained in Section 2.2.2, we only consider signature schemes that are message revealing or, alter-
natively, only valid when transmitted with their message.

75

{∣∣∣∣∣

〈[
R1| {|P1|}Ke

P0

|R2

]〉

Kv
P1

|
{∣∣Kv

P0

∣∣}
Ke

P0

∣∣∣∣∣

}

Ke
P1

〈[
R1| {|P1|}Ke

P0

|R2

]〉

Kv
P1

|
{∣∣Kv

P0

∣∣}
Ke

P0

Ke
P1

〈[
R1| {|P1|}Ke

P0

|R2

]〉

Kv
P1

Ke
P0

{∣∣Kv
P0

∣∣}
Ke

P0

Kv
P0

R1| {|P1|}Ke
P0

|R2 Kv
P1

R2
R1| {|P1|}Ke

P0

{|P1|}Ke
P0

R1

Ke
P0

P1

Figure 7-2: Example Dolev-Yao parse tree with signatures

76

• an adversary event (where j, k < i) of the form

– [“enc”, j, k,mi], in which case mk ∈ KPub and mi = {|mj|}mk
,

– [“dec”, j, k,mi], in which case mk ∈ K
e
Adv, and mj = {|mi|}mk

,

– [“sign”, j, k,mi], in which case mk ∈ K
v
Adv and mi = 〈[mj]〉mk

,

– [“pair”, j, k,mi], in which case mi = mj|mk

– [“extract-l”, j,mi], in which case mj = mi|mk for some mk ∈ A,

– [“extract-r”, j,mi], in which case mj = mk|mi for some mk ∈ A,

– [“random”,mi], in which case mi = R for some R ∈ RAdv ,

– [“name”,mi], in which case mi = A for some A ∈M,

– [“pubkey”,mi], in which case mi = K for some K ∈ KPub,

– [“deliver”, j, Pi], in which case the message mj is delivered to party Pi.

• or a participant event of the form [“output”, Pi,mi] or [“message”, Pi,mi], in that case

[“deliver”, k, pi] is the most recent adversary event in the trace (for some k) and the

protocol action for Pi in its current role and internal state, upon receiving mk, is to

output/send message mi. (P(Sj , oi,mk, Pi)→ (Si,mi, {output,message})).

Note that there is no adversarial action for signature verification, this is because in the

symbolic world, an adversary is either able to create the signature symbol or not – there is

no need to verify that a signature symbol is a signature symbol.

7.2 Simple Protocols

Simple protocols and their mappings are redefined to allow signing capabilities.

Definition 24 (Simple protocols) A simple protocol is a pair of interactive Turing ma-

chines (ITMs) {M1, M2}, one for each role, where each machine Mi implements an algorithm

described by a pair (Σ,Π):

• Σ is a store, a mapping from variables to tagged values (explained further below) and

• Π is a program that expects as input

– The security parameter k,

77

Π ::= begin; statementlist

begin ::= input(SID,RID,PID0,PID1,RID2, ...);
(Store 〈“role”,RID〉, 〈“name”,PID0〉, 〈“name”,PID1〉, 〈“name”,PID2〉,...
in local variables MyRole, MyName, PeerName, OtherName2,...
respectively.

statementlist ::= statement statementlist

| finish

statement ::= newrandom(v)
(generate a k-bit random string r and store 〈“random”, r〉 in v)

| encrypt(v1, v2, v3)
(Send (Encrypt, 〈PID,SID〉 , v2) to Fcpke where v1 = 〈“pid”,PID〉,
receive c, and store 〈“ciphertext”, c, 〈PID1,SID〉〉 in v3)

| decrypt(v1, v2)
(If the value of v1 is 〈“ciphertext”, c′〉 then send
(Decrypt, 〈PID0,SID〉 , c′) to Fcpke instance 〈PID0,SID〉,
receive some value m, and store m in v2 Otherwise, end.

| sign(v1, v2, v3)
(Send (Sign, 〈PID,SID〉 , v2) to Fcert where v1 = 〈“pid”,PID〉,
receive σ, and store 〈“signature”, σ, 〈PID1,SID〉〉 in v3)

| verify(v1, v2, v3)
(If the value of v1 is 〈“signature”, σ′〉 then send
(Verify, 〈PID0,SID〉 , σ′, v2) to Fcert instance 〈PID0,SID〉,
receive some value b, and store b in v3

Otherwise, end.
| send(v)

(Send value of variable v)
| receive(v)

(Receive message, store in v)
| output(v)

(send value of v to local output)
| pair(v1, v2, v3)

(Store 〈“pair”, σ1, σ2〉 in v3, where σ1 and σ2 are the values of
v1 and v2, respectively.)

| separate(v1, v2, v3)
(if the value of v1 is 〈“join”, σ1, σ2〉, store σ1 in v2
and σ2 in v3 (else end))

| if (v1 == v2 then statementlist else statementlist

(where v1 and v2 are compared by value, not reference)
finish ::= output(〈“finished”, v〉); end.

The symbols v, v1, v2 and v3 represent program variables. It is assumed that 〈“pair”, σ1, σ2〉
encodes the bit-strings σ1 and σ2 in such a way that they can be uniquely and efficiently
recovered. A party’s input includes its own PID, the PID of its peer, and other PIDs in the
system. Recall that the SID of an instance of Fcpke is an encoding 〈PID,SID〉 of the PID
and SID of the legitimate recipient.

Figure 7-3: The grammar of simple protocols

78

– Its SID SID, its PID PID, and its RID RID,

– PID1 that represents the name for the other participant of this protocol execution.

The programs tags the input values, binds them to variables in the store, and then acts

according to a sequence of commands consistent with the grammar in Figure 3-2.

Definition 25 (Mapping of simple protocols to symbolic protocols) Let p = {M0, M1}

be a simple protocol. Then p̂ is the Dolev-Yao protocol

Pi : S ×M×O ×A→ S ×A×message×A× output

that implements ITM M, except that:

• The variables of M are interpreted as elements of the symbolic message algebra A.

• Instead of receiving as input SID, PID0, PID1, RID, the store is initialized with its

own name P0, its own keys K e
P0
|K v

P0
, and a name P1 and keys KPe

1
|K v

P1
of the other

participant. The symbols P0 and P1 represent PID0 and PID1, respectively. Similarly,

the symbols K0 and K1 represent 〈PID0,SID〉 and 〈PID1,SID〉, respectively.

• Instead of creating a new random bit-string, the symbolic protocol returns R(i,n) and

increments n (which starts at 0),

• Instead of sending (Encrypt, 〈PID,SID〉 ,M) to Fcpke and storing the result, the com-

posed symbol {|Σ(M)|}
KP1

is stored instead (where Σ(M) is the value bound to the

variable M in the store Σ).

• Instead of sending (Decrypt, 〈PID0,SID〉 ,C) to Fcpke and storing the result, the value

stored depends on the form of Σ(C). If Σ(C) is of the form {|M |}
KP0

then the value

M is stored. Otherwise, the garbage value G is stored instead.

• Instead of sending (Sign, 〈PID,SID〉 ,M) to Fcert and storing the result, the composed

symbol 〈[Σ(M)]〉
KP0

is stored instead (where Σ(M) is the value bound to the variable M

in the store Σ).

• Instead of sending (Verify, 〈PID0,SID〉 ,S,M) to Fcert and storing the result, the value

stored depends on the form of Σ(S). If Σ(S) is of the form 〈[M]〉
KP1

then the value 1

is stored. Otherwise, 0 is stored instead.

79

• Pairing and separation use the symbolic pairing operator.

• Lastly, the bit-strings “starting” and “finished” are mapped to the Dolev-Yao symbols

Starting and Finished, respectively.

7.3 UC to Dolev-Yao: The Revised Mapping Lemma

Definition 26 (Traces of concrete protocols) Let p be a F-hybrid protocol. Inductively

define tracep,A,Z(k, z, ~r), as the trace of protocol p in conjunction with adversary A and

environment Z with inputs z,~r, and security parameter k. Initially, the trace is the null

string. The trace then grows as the protocol’s execution progresses.

• If the environment provides input m to a party with id (SID,RID), then

〈“input”, (SID,RID),m〉 is appended to the end of t.

• If the adversary provides input m to a party with id PID, then 〈“adv”,PID,m〉 is

appended to the end of t.

• If a party PID generates a new random string r, then 〈“random”, r〉 is appended to t.

• If a party pairs values m1 and m2 to form (m1,m2), then 〈“pair”,m1,m2〉 is appended

to t.

• If a party PID writes a message m, it does so in one of two ways

– if it writes m on its local output tape, then 〈“output”,PID,m〉 is appended to t.

– if it writes m on its outgoing communication tape, then 〈“message”,PID,m〉 is

appended to t.

• If Fcpke is activated by party PID with call (Encrypt, 〈PID,SID〉 ,m) and Fpke responds

with ciphertext c, then 〈“ciphertext”, 〈PID,SID〉 ,m, c〉 is appended to t. (If Fcpke

returns, ⊥ then nothing is appended to t).

• If Fcpke is activated by party PID with call (Decrypt, 〈PID,SID〉 , c) and Fcpke responds

with plaintext m, then 〈“dec”, 〈PID,SID〉 , c,m〉 is appended to t. (If Fcpke returns, ⊥

then nothing is appended to t).

80

• If Fcert is activated by party PID with call (Sign, 〈PID,SID〉 ,m) and Fcpke responds

with signature σ, then 〈“signature”, 〈PID,SID〉 ,m, σ〉 is appended to t. (If Fcert re-

turns, ⊥ then nothing is appended to t).

• If Fcert is activated by party PID with call (Verify, 〈PID,SID〉 ,m, σ) and Fcert responds

with boolean bit b, then 〈“ver”, 〈PID,SID〉 ,m, σ, b〉 is appended to t. (If Fcert returns,

⊥ then nothing is appended to t).

tracep,A,Z(k, z, ~r) denotes t upon completion of the protocol execution. Let tracep,A,Z(k, z)

denote the random variable for tracep,A,Z(k, z, ~r) when ~r is uniformly chosen. Let tracep,A,Z

denote the probability ensemble {tracep,A,Z(k, z)}
k∈N,z∈{0,1}∗

Definition 27 (The mapping from concrete traces to symbolic traces) Let p be a

concrete Fcpke/Fcert-hybrid protocol and let t be a trace of an execution of p with security

parameter k, environment Z with input z, and random input vector ~r. We determine the

mapping of t to a Dolev-Yao trace in two steps. (These steps can be thought of as two

“passes” on the string t.)

(I.) First, we read through the string t character by character, in order, and inductively

define the following partial mapping f from {0, 1}∗ to elements of the algebra A. (Note that

the patterns in t addressed below may be nested and overlapping. That is, the same substring

may be part of multiple patterns. A pattern is recognized as soon as the last character in

the pattern is read.)

• Whenever we encounter a pattern of the form 〈“name”, β〉 for some string β and

f(〈“name”, β〉)is not yet defined then set f(〈“name”, β〉) = P for some new symbol

P ∈M not in the range of f so far.

• Whenever we encounter a pattern of the form 〈“boolean”, β〉 for some string β and

f(〈“boolean”, β〉) is not yet defined then set f(〈“boolean”, β〉) = P for some new symbol

P ∈ B not in the range of f so far.

• Whenever we encounter in some event a pattern of the form 〈“random”, β〉 for some

string β and f(〈“random”, β〉) is not yet defined then set f(〈“random”, β〉) = N for

some new symbol N ∈ R that is not in the range of f so far.

• Whenever we encounter a pattern of the form 〈〈“pid”,PID〉 , 〈“sid”,SID〉〉 for some

strings PID,SID, with f(〈“pubkey”, 〈PID,SID〉〉) and/or f(〈“verkey”, 〈PID,SID〉〉) not

81

yet defined, then set f(〈“pubkey”, 〈PID,SID〉〉) = K and/or f(〈“verkey”, 〈PID,SID〉〉) =

K ′ for some new K ∈ KPub and K ′ ∈ KV er not already in the range of f .

• Whenever we encounter a pattern of the form 〈“pair”, β1, β2〉, then proceed as fol-

lows. First, if f(β1) is not yet defined then set f(β1) = G, where G is the garbage

symbol. Similarly, if f(β2) is not yet defined then set f(β2) = G. Finally, set

f(〈“pair”, β1, β2〉) = f(β1)|f(β2).

• Whenever we encounter a pattern of the form 〈“ciphertext”, 〈PID,SID〉 ,m, c〉 for some

strings PID,SID,m, c, then f is expanded so that f(〈“ciphertext”, 〈PID,SID〉 , c〉) =

{|f(m)|}
f(〈“pubkey”,〈PID,SID〉〉). (Recall that such a pattern is generated whenever an

encryption call to Fcpke is made. Also, at this point both f(m) and f(〈“pubkey”, 〈PID,SID〉〉)

must already be defined, since this is an encryption call made by a party running a

simple protocol.)

• Whenever we encounter a pattern of the form 〈“dec”, 〈PID,SID〉 , c,m〉, then proceed

as follows. First, if f(m) is not yet defined, then set f(m) = G, where G is the garbage

symbol. Next, set f(〈“dec”, 〈PID,SID〉 , c〉) = {|f(m)|}
f(〈“pubkey”,〈PID,SID〉〉). (Recall

that such a pattern is generated whenever a decryption call to Fcpke is made. The

case where f(m) = G occurs when a ciphertext was not generated via the encryption

algorithm. It includes both the case where the decryption algorithm fails and the case

where the decryption algorithm outputs a message that cannot be parsed by simple

protocols.)

• Whenever we encounter a pattern of the form 〈“signature”, 〈PID,SID〉 ,m, σ〉 for some

strings PID,SID,m, σ, then f is expanded so that f(〈“signature”, 〈PID,SID〉 , σ〉) =

〈[f(m)]〉
f(〈“verkey”,〈PID,SID〉〉). (Recall that such a pattern is generated whenever a sig-

nature call to Fcert is made. Also, at this point both f(m) and f(〈“verkey”, 〈PID,SID〉〉)

must already be defined, since this is a signing call made by a party running a simple

protocol.

• Whenever we encounter a pattern of the form 〈“verification”, 〈PID,SID〉 , σ,m, b〉, then

proceed as follows. First, if f(m) is not yet defined, then set f(m) = G, where G is the

garbage symbol. Next, if b = 1, set f(〈“verify”, 〈PID,SID〉 , σ〉) = 〈[f(m)]〉
f(〈“verkey”,〈PID,SID〉〉),

else set f(〈“verify”, 〈PID,SID〉 , σ〉) = G. (Recall that such a pattern is generated

82

whenever a signature call to Fcert is made. The case where f(m) = G occurs when a

signature was not generated via the signing algorithm. If the signature is valid, σ is

made a valid signature symbol, if it isn’t valid, it is set to garbage)

(II.) In the second step, we construct the actual Dolev-Yao trace. Let t = G1||G2|| . . . tn

be the concrete trace. Then construct the Dolev-Yao trace t̂ by processing each G in turn,

as follows:

• If Gi = 〈“input”, (SID,RID),m〉, then we find m = f(m), and generate the symbolic

event H = [“input”,P ,m] (where P is the symbolic name of the input recipient).

• If Gi = 〈“ciphertext”, 〈PID,SID〉 ,m, c〉 or Gi = 〈“dec”, 〈PID,SID〉 , c,m〉, then no sym-

bolic event is generated.

• If Gi = 〈“signature”, 〈PID,SID〉 ,m, σ〉 or Gi = 〈“ver”, 〈PID,SID〉 , σ,m, b〉, then no

symbolic event is generated.

• If Gi = 〈“output”,PID,m〉 then Gi is mapped to the symbolic participant event

(f(〈“name”,PID〉), output , f(m)).

• If Gi = 〈“message”,PID,m〉 then Gi is mapped to the symbolic participant event

(f(〈“name”,PID〉),message , f(m)).

• If G = 〈“adv”,PID,m〉, let m = f(m). Then there are two cases:

1. m is in the closure of the symbolic interpretations of the messages sent by the

parties in the execution so far, i.e.

m ∈ C
[{

m′ : m′ = f(m′) and the event 〈“message”,PID,m′〉 is a prior event in t
}]

.

In this case there exists a finite sequence of adversary events that produces mi.

Then G is mapped to this sequence of events Hi1, Hi,2. . .Hi,n′ so that the message

of Hi,n′−1 is mi and Hi,n′ = [“deliver”, (i, n′ − 1),P ′] (where P ′ is the Dolev-Yao

name of the concrete participant who received the message from the concrete

adversary).

83

2. Otherwise, m is not in the above closure. In this case, G maps to the Dolev-Yao

event [“fail”,mi].

We now prove the Mapping Lemma for public key encryption and digital signatures

using the reformulated ideal functionalities of Chapter 5.

Lemma 6 (The Revised Mapping Lemma) Let F denote both ideal functionalities Fcpke

and Fcert. For all simple F-hybrid protocols p, adversaries A, environments Z, and inputs

z of length polynomial in the security parameter k,

Pr
[
t← trace

F
p,A,Z(k, z) : t̂ is a valid DY trace for p̂

]
≥ 1− neg(k)

Proof. Let t be the trace of a simple protocol p. We will show two things: (1) if t̂

does not contain the event [“fail”,mi], then it is a valid DY trace of protocol p̂ and (2) the

probability that t̂ includes such an event is negligible. The lemma trivially follows from

these two assertions.

(1) By the definition of the fail event, if such an event does not occur, then we have

that all adversary events in t̂ are valid. It then remains to show that the participant events

in t̂ are valid as well. For a given participant event of the form (P ′
i , Li,mi), we need to show

that

P(Sj , oi,m, Pi) = (Si,m
′, Li)

where

1. [“deliver”, k, Pi] for some k is the most recent adversary event in t̂.

2. m is the second element in the kth adversary event in the current trace.

3. Sj is the sequence of inputs and messages received by Pi before this event in t̂.

4. oi is Pi’s role according to t̂.

These facts follow directly from the definition for the symbolic counterpart of simple pro-

tocols (Definition 14). By its very nature, P is mimicking concrete protocol p, so the

only difference between protocol traces is the naming of variables – the structure of simple

protocols ensures that this renaming does not affect protocol messages or outputs.

84

(2) Assume there exists an event of the form [“fail”,m]. Let M = m1,m2, ..., denote the

messages that are communicated by Dolev Yao parties prior to the failure event, i.e. those

that appear in the [“message”, ...] events preceding [“fail”,m] in t̂.

The failure event implies the concrete adversary created a message m that is translated to

a Dolev-Yao element m not in the closure of the adversary’s knowledge (f(m) = m 6∈ C[M]).

We show that the odds of such an event occurring are negligible.

Examine the parse tree of m. The only three operations available for creating compound

messages are pairing, encryption, and signatures. By definition, membership in C[M] is

closed under pairing and encryption; that is, if two siblings in the parse tree are both in

C[M], then so is their parent. The exception is signatures – an adversary who knows a

verification key and a message does not necessarily know the signature for the message

under that verification key.

Consequently, if every leaf or signature in the parse tree of m has a path to the tree root

with a node in C[M], then m ∈ C[M]. Since m 6∈ C[M], it must be the case that there is a

leaf or signature m∗ that has no such path node.

We thus have an adversary A that generates an m that maps to m. Using A, we construct

adversary A′ that will produce a bit string m∗ that will map to m∗. A′ simulates A to produce

m then walks down the parse tree of m to m∗ while recursively applying the appropriate

deconstructors to m.

• If m′ is a pair ml|mr, then A′ separates m′ = 〈“pair”,ml||mr〉 into ml and mr, then

walks down the parse tree to the symbol containing m∗ and recursively operates on

the corresponding bitstring ml or mr.

• If m′ is an encryption {|mc|}K , then A′ must decrypt [“ciphertext”,m′], i.e. produce

what Fcpke would return to the appropriate party when called with (Decrypt,m′).

Because m′ 6∈ C[M], the probability A′ could have independently produced m′ is

negligible, due to the statistical unpredictability of E. Thus, if there is a pair (m′,mc)

stored in Fcpke, it must be that A initiated the request (Encrypt,mc) to Fcpke. Because

A′ is simulating A it must have passed this request along, and so it knows what message

mc is the decryption of m′. On the other hand, if there is no pair (m′,mc) stored in

Fcpke, then the decryption of m′ is D(m′), where D was an algorithm provided by A.

A′ can run D(m′) itself to obtain mc. A′ then walks down the parse tree to symbol mc

85

and recursively operates on mc.

By recursively applying the deconstruction operations, A′ eventually produces a string m∗

that maps to an atomic symbol or signature m∗. Notice that the only atomic symbols not

in the adversary’s initial view are those random nonces that were not generated by the

adversary (R \ RAdv). If m∗ is a random nonce not in the closure of the adversary, then

m∗ was generated by an honest protocol participant and chosen uniformly from {0, 1}k,

independent from the view of A′. The probability A′ could generate the string m∗ is 2−k;

since there are at most a polynomial number of k-bit strings that are valid nonces in this

protocol execution, the overall probability that A′ generates a string that maps to a valid

nonce is poly(k)2−k, which is negligible.

It must then be that m∗ is an honest party signature. If Fcert created m∗ for an honest

party, but m∗ 6∈ C[M], then by the statistical unpredictability of S, A′ can only guess the

signature with negligible probability. A′ couldn’t have forged a new signature for an honest

party’s key since, under the ideal functionality, honest party signatures not generated by

Fcert never verify. This means the overall probability that A′ produces a signature that

maps to a symbolic signature outside of C[M] is negligible.

Thus the probability that t̂ includes an event of form [“fail”,m] must be negligible. �

7.4 Dolev-Yao Back to UC: DY Mutual Authentication and

F2ma

For self-containment, we restate the mutual authentication equivalence theorem (Theorem

3) here.

Theorem 7 Let p be a simple two-party protocol. Then p realizes F2ma if and only if the

corresponding symbolic protocol p̂ satisfies Dolev-Yao 2-party mutual authentication

Canetti and Herzog proved Theorem 7 specifically for protocols in a Fcpke-hybrid, but

made no use of the ideal functionality’s specific nature. Their proof can be trivially ex-

tended to apply to protocols in any F-hybrid model containing multiple, composable ideal

functionalities, such as the ones we have defined in this thesis. Thus, Theorem 7 concerning

Dolev-Yao 2-party mutual authentication (Definition 17) and F2ma (Figure 3-5) still holds

for our new construction of the UCSA framework.

86

7.5 Using The Framework

Having stepped through and proved the different components of the universally composable

symbolic analysis framework, we illustrate how it can be used by giving an informal security

proof for a variation of the SPLICE authentication protocol (Figure 7-4).2

A→ B : A, encB(A,RA), sigA(A, encB(A,RA))

A← B : B,A, encB(B,RA)

Figure 7-4: The SPLICE authentication protocol

As you can see, the SPLICE protocol has the basic form required of a simple protocol

with a very natural translation to a symbolic protocol (Figure 7-5). We now show that

Let DP represent the initial input/state of party P , let ∗ denote a wildcard which
can be used to match anything, and let P be a place holder for the party identity
each party thinks it is engaged with. We define PSPLICE to be the mappings:

• {DA} ×A× Initiator × {} →

{DA ∪ {RA}} ×

〈〈[
A| {|A|RA|}K e

P

]〉

K v
A

〉
×message× 〈Starting|A|P |K e

P 〉 ×

output

• {DA ∪ {RA}} ×A× Initiator ×
〈
P |A| {|P,RA|}K e

A

〉
→

S⊥ × 〈Finished|A|P |K e
P 〉 × output

• {DB} ×B ×Responder ×

〈〈[
P, {|P |RP |}K e

B

]〉

K v
P

〉
→

S⊥ ×
〈
B,P {|B|RP |}K e

P

〉
×message×

〈Starting|B|P |K e
P |Finished|B|P |K e

P 〉 × output

• S⊥ × ∗ × ∗ × 〈∗〉 →

S ∗× ⊥ ×output

Figure 7-5: The SPLICE symbolic protocol, PSPLICE

2This definition is based upon a variant of the SPLICE protocol proposed by Clark and Jacob [20], as
presented in [10].

87

PSPLICE achieves Dolev-Yao 2-party mutual authentication (as stated in Definition 17).

If A outputs that it has finished PSPLICE with party B, this means it must have received

symbolic message
〈
B|A| {|B,RA|}K e

A

〉
. By the security offered by public key encryption,

this could have only happened if B received (and decrypted) the symbol
〈
{|A,RA|}K e

B

〉
.

Thanks to the underlying universally composable framework, if B is honest then the only

way B would have produced a message containing the string RA is if it had received the

entire message

〈〈[
A| {|A|RA|}K e

B

]〉

K v
A

〉
. If it had received any other message containing

symbol
〈
{|A,RA|}K e

B

〉
, then that message would have been of the wrong form. Since B has

received this message, B has output 〈Finished|B|A|K e
A〉.

Similarly if B outputs that it has finished the PSPLICE protocol with A, this means

it must have received symbolic message

〈〈[
A| {|A|RA|}K e

B

]〉

K v
A

〉
. If A is honest, then only A

could have created this message, which implies the trace contains the event 〈Starting|A|B|K e
B〉.

Thus both the Initiator and Responder in this protocol will only produce a successful

Finished output if the other has produced the proper Starting output. This means the

symbolic version of SPLICE (PSPLICE) meets the Dolev-Yao 2-party mutual authentication

criteria. Now, thanks to the UCSA framework, we can further assert that the real world

SPLICE protocol – implemented using a sufficiently secure key distribution system, strong

signatures, and IND-CCA2 public key encryption – securely realizes ideal 2-party mutual

authentication (Figure 3-5).

88

Chapter 8

Future Research Directions

8.1 An EUF-ACMA Realizable Ideal Signature Functional-

ity

The previous definition of Fsig [15] showed equivalence with EUF-ACMA and intuitively

there does not appear to be a compelling reason why the introduction of an ideal encryption

functionality should change this. The attack described in Section 4.3.3 is certainly valid,

but it seems like an ideal functionality should be able to protect against such an attack

without heightening the security needed to realize it. Here are two possible ways to define

variants of Fsig which might achieve this goal:

1. The level of abstraction used in Fsig is lessened by parameterizing it with a specific

signature scheme Σ in order to obtain a FΣ
sig which still enforces the core ideal signature

functionality, but behaves in a manner consistent with Σ for extraneous cases (like

handling forged signatures for messages that have existing signatures). While it may

lead to more flexible secure realizations, this solution is somewhat undesirable in the

UCSA framework since it would necessitate reproving the Mapping Lemma for each

distinct instance of FΣ
sig.

2. We take advantage of the fact that, in the UCSA framework, the actions of honest

parties are limited to those allowed under simple protocols. This limits the power of

the environment when trying to distinguish between interactions in the real and ideal

worlds. In our Chapter 6 proofs, we protected against an environment which could

perform any efficiently computable operation messages – it may be possible to define a

89

weaker ideal signature scheme (Fsig|SP) which can be securely realizes by EUF-ACMA

in an environment hampered by the restrictions of simple protocols.

8.2 Other primitives and protocol goals

As this thesis shows, the UCSA framework can be extended to include protocols that use

multiple cryptographic primitives. We are now limited to protocols using public key en-

cryption and digital signatures, but as more primitives are added to the framework, the set

of analyzable protocols will become richer. New protocol goals can also be added, allowing

analysis of protocols with goals other than 2-party mutual authentication and key exchange.

8.3 Mixing Ideal Functionalities

Part of what makes the UC framework so powerful is the ability to abstract concrete schemes

and protocols into ideal functionalities which can be used by other protocols as subroutines,

secure in the knowledge that there are no potential problems arising from the composing

of multiple lower-level components. There is, however, a lack of assured compatibility for

different ideal functionalities used in the same protocol. In general, ideal functionalities

have been formulated with the mentality that they are the sole functionality being used by

a protocol or that they are being used in conjunction with other functionalities with which

no conflict could arise. As Chapter 4 showed, this is not the case – ideal functionalities can

run into problems when combined with other functionalities within a protocol. The UC

and UCSA frameworks would both be greatly empowered by a methodology for assuring

the compatibility of ideal functionalities within a protocol.

90

Bibliography

[1] Proceedings of the 12th IEEE Computer Security Foundations Workshop (CSFW 12).

IEEE Computer Society, June 1999.

[2] Mart́ın Abadi and Jan Jürjens. Formal eavesdropping and its computational interpre-

tation. In Naoki Kobayashi and Benjamin C. Pierce, editors, Proceedings, 4th Interna-

tional Symposium on Theoretical Aspects of Computer Software TACS 2001, volume

2215 of Lecture Notes in Computer Science, pages 82–94. Springer, 2001.

[3] Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography (the com-

putational soundness of formal encryption). IFIP International Conference on Theo-

retical Computer Science (IFIP TCS2000), volume 1872 of Lecture Notes in Computer

Science, pages 3–22, August 2000.

[4] Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography (the com-

putational soundness of formal encryption). Journal of Cryptology, 15(2):103–127,

2002.

[5] Jee Hea An, Yevgeniy Dodis, Tal Rabin. On the Security of Joint Signature and

Encryption. Lecture Notes in Computer Science, page 83. Volume 2332, Jan 2002,

[6] Michael Backes and Dennis Hofheinz. How to Break and Repair a Uni-

versally Composable Signature Functionality. Cryptology ePrint Archive,

http://eprint.iacr.org/2003/240. 2003.

[7] Michael Backes, Brigit Pfitzmann, and Michael Waidner. Reactively Secure Signature

Schemes. In Proceedings of the 6th Information Security Conference, 2003.

91

[8] M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the design and

analysis of authentication and key exchange protocols. In Proc. 30th Annual ACM

Symposium on Theory of Computing (STOC), pages 419–428, 1998.

[9] Bruno Blanchet. Automatic proof of strong secrecy for security protocols. In Proceed-

ings, 2004 IEEE Symposium on Security and Privacy, pages 86–102, 2004.

[10] Colin Boyd and Anish Mathuria. Protocols for Authentication and Key Establishment.

Springer, 2003.

[11] Dan Boneh, editor. Advances in Cryptology - CRYPTO 2003, volume 2729 of Lecture

Notes in Computer Science. Springer-Verlag, August 2003.

[12] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal

of Cryptology, 13(1):143–202, 2000.

[13] Ran Canetti. Universal composable security: A new paradigm for cryptographic pro-

tocols. In 42nd Annual Syposium on Foundations of Computer Science (FOCS 2001),

pages 136–145. IEEE Computer Society, October 2001.

[14] Ran Canetti. Universally composable signatures, certification, and authentication.

Cryptology ePrint Archive, http://eprint.iacr.org/2003/239, 2003.

[15] Ran Canetti. Universally composable signature, certification, and authentication. In

Proceedings of the 17th IEEE Computer Security Foundations Workshop (CSFW 16),

pages 219–233. IEEE Computer Society, June 2004.

[16] Ran Canetti and Jonathon Herzog Universally Composable Symbolic Analysis of Cryp-

tographic Protocols (The Case of Encryption-Based Mutual Authentication and Key

Exchange) Cryptology ePrint Archive, http://eprint.iacr.org/2004/334. 2004.

[17] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use

for building secure channels. In Birgit Pfitzmann, editor, Advances in Cryptology -

Eurocrypt 2001, volume 2045 of Lecture Notes in Computer Science, pages 453–474.

Springer-Verlag, May 2001.

[18] Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing chosen-ciphertext

security. In Boneh [11], pages 565–582.

92

[19] Ran Canetti and Tal Rabin. Universal composition with joint state. In Boneh [11],

pages 265–281.

[20] John Clark and Jeremy Jacob. On the security of recent protocols. Information Process-

ing Letters, 56(3):151-155, November 1995.

[21] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. SIAM Journal of

Computing, 30(2):391–437, 2000.

[22] D. Dolev and A. Yao. On the security of public-key protocols. Proceedings of the IEEE

22nd Annual Symposium on Foundations of Computer Science, pages 350–357, 1981.

[23] Oded Goldreich. Foundations of Cryptography—Volume II (Basic Applications). Cam-

bridge University Press, 2004.

[24] Shafi Goldwasser, Silvio Micali, Andy Yao Strong signature schemes. Proceedings of the

15th Annual ACM symposium on Theory of Computing (STOC ’83), pages 431–439.

ACM Press, 1983

[25] Jonathan Herzog. Computational Soundness for Standard Assumptions of Formal

Cryptography. PhD thesis, Massachusetts Institute of Technology, May 2004.

[26] Gavin Lowe. An attack on the Needham–Schroeder public-key authentication protocol.

Information Processing Letters, 56:131–133, 1995.

[27] Gavin Lowe. Breaking and fixing the Needham–Schroeder public-key protocol using

FDR. In Margaria and Steffen, editors, Tools and Algorithms for the Construction

and Analysis of Systems, volume 1055 of Lecture Notes in Computer Science, pages

147–166. Springer–Verlag, 1996.

[28] Daniele Micciancio and Bogdan Warinschi. Soundness of formal encryption in the

presence of active adversaries. In Proceedings, Theory of Cryptography Conference,

number 2951 in Lecture Notes in Computer Science, pages 133–151. Springer, February

2004.

[29] John C. Mitchell, Mark Mitchell, and Ulrich Stern. Automated analysis of crypto-

graphic protocols using Murϕ. In Proceedings, 1997 IEEE Symposium on Security and

Privacy, pages 141–153. IEEE, Computer Society Press of the IEEE, 1997.

93

[30] Roger Needham and Michael Schroeder. Using encryption for authentication in large

networks of computers. Communications of the ACM, 21(12):993–999, 1978.

[31] Amit Sahai Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-

Ciphertext Security In Proceedings of 40th Annual IEEE Symposium on Foundations

of Computer Science (FOCS), 1999.

[32] D. Song. Athena, an automatic checker for security protocol analysis. In Proceedings

of the 12th IEEE Computer Security Foundations Workshop (CSFW 12) [1], pages

192–202.

94

